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Rotating turbulence provides a simple configuration to study characteristic fea-

tures and turbulent model performance in anisotropic turbulence. It has been ob-

served in experiments and Direct Numerical Simulation (DNS) that rotating tur-

bulence has many distinctive qualities, such as reduced kinetic energy dissipation,

reverse kinetic energy transfer from small scales to large scales, quasi 2D flow at large

scales, and cyclone/anti-cyclone asymmetry. A successful subgrid scale (SGS) model

should be able to capture these features, and the challenge is to simultaneously reflect

the anisotropic 3D nature of small scales and the primarily 2D nature of larger scales.

A-priori tests and a-posteriori tests were carried out to examine model performance.

A-priori tests of models were performed using DNS results for forced isotropic

and rotating turbulence. A range of models were tested varying from algebraic,

gradient, and scale similarity, to one-equation viscosity and non-viscosity dynamic

structure models. Anisotropy and Material Frame Indifference (MFI) requirements

for models in rotating systems were reviewed and used to help construct new models

based on the dynamic structure approach. The models were evaluated primarily us-

ing correlation and regression coefficients of individual components of the SGS tensor,

components of the divergence of the SGS stresses, and the SGS energy production
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term. For all measures examined, the MFI-consistent dynamic structure models per-

form significantly better, especially for rotating turbulence.

At the a-posteriori test level, we evaluated models using two flow configura-

tions: (i) homogeneous decaying turbulence; and (ii) rotating turbulence forced at

large or intermediate scales. Testing was done for the first configuration through

a systematic comparison between DNS results and large eddy simulation results at

lower resolutions. The results were then analyzed in terms of several representative

characteristics, including resolved kinetic energy, SGS energy production, molecular

dissipation, and kinetic energy spectrum. The new models showed more accurate

results than traditional models for almost all of these characteristics. The second

configuration concerns the characteristic features of rotating turbulence. Again, com-

pared to traditional models, the new models were better able to capture essential

features of rotating turbulence.
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Chapter 1

Introduction

1.1 Background

According to an apocryphal story, Werner Karl Heisenberg (1901-

1976) was asked what he would ask God, given the opportunity. His

reply was, “When I meet God, I am going to ask Him two questions:

Why relativity? And why turbulence? I really believe He will have an

answer for the first.”

Turbulence occurs frequently in nature. It is a state of fluid motion that is char-

acterized by apparently random and chaotic three-dimensional vorticity. It usually

dominates all other flow phenomena and results in increased kinetic energy dissipa-

tion, mixing, heat transfer, and drag. Leonardo da Vinci (1452-1519) probably is

the first know person to attempt a scientific study of turbulence. Around 1510, he

drew a series pictures of vortices (Fig. 1.1) and left his observation (in Piomelli’s

translation, [89]): “Observe the motion of the water surface, which resembles that

of hair, that has two motions: one due to the weight of the shaft, the other to the

shape of the curls; thus, water has eddying motions, one part of which is due to the

principal current, the other to the random and reverse motion . . . The small eddies

are almost numberless, and large things are rotated only by large eddies and not by
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small ones, and small things are turned by both small eddies and large . . . ” These

notes were not accompanied by a mathematical analysis, but the observation might

be seen as a precursor to Reynolds averaging of velocity.

Figure 1.1: Sketches from Leonardo da Vinci’s notebooks.

Leonardo was followed in the late seventeenth century by Sir Isaac Newton

(1643-1727). His contributions to fluid mechanics include four important findings:

his second law, ~F = m · ~a; the concept of Newtonian viscosity in which stress and

strain rate vary linearly; the reciprocity principle, which states that the force applied

on a stationary object by a moving fluid is equal to the change in momentum of

the fluid as it deflects around the front of the object; and the relationship between

the speed of waves at a liquid surface and their wavelength. In the eighteenth and

nineteenth centuries, more significant work was done to mathematically describe the

motion of fluids. Daniel Bernoulli (1700-1782) derived the famous Bernoulli equa-

tion, and Leonhard Euler (1707-1783) proposed the Euler equations, which describe

both the conservation of momentum for an inviscid fluid and the conservation of
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mass. Euler also proposed the velocity potential theory. Two other very important

contributors to the field of fluid flow emerged at this time. Claude-Louis Navier

(1785-1836) and Sir George Gabriel Stokes (1819-1903), both of whom introduced

viscous transport into the Euler equations. These efforts resulted in the now famous

Navier-Stokes equations. The differential mathematical equations that these two re-

searchers proposed nearly 200 years ago are the basis of the modern Computational

Fluid Dynamics (CFD) industry. They include expressions for the conservation of

mass and momentum.

The anecdote cited at the beginning of this chapter is probably untrue, while

it bears an uncanny resemblance to a comment in 1932 by the British physicist Sir

Horace Lamb (1849-1934), who, in an address to the British Association for the

Advancement of Science. He reportedly said, “I am an old man now, and when I die

and go to heaven there are two matters on which I hope for enlightenment. One is

quantum electrodynamics, and the other is the turbulent motion of fluids. And about

the former I am rather optimistic.”

Why then is the problem of turbulence so difficult? One reason is that these

nonlinear partial differential equations, the Navier-Stokes equations, appear to be

insoluble. There are only partial proofs for the existence, uniqueness and regularity

of solutions. What is more, these proofs correspond to simplified cases. It is not

clear whether the equations themselves have some hidden randomness, or just the

solutions. And if the latter, is it a consequence of the equations, or a consequence of

the initial conditions?

With increased computing power over the last three decades, researchers can

numerically solve the Navier-Stokes equations to obtain a complete description of a
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(a) Re ≈ 10
11
, Ro ≈ 1      (b) Re ≈ 10

8
, Ro ≈ 5000                  (c) Re ≈ 10

7
, Ro ≈ 0.3

Figure 1.2: Some examples of Reynolds numbers and Rossby numbers: (a)

Hurricane Katrina on August 28, 2005; (b) artist’s conception of an Ohio class

submarine launching Tomahawk cruise missiles; (c) test of a Pratt & Whitney F100

turbofan engine.

turbulent flow, where the flow variable (e.g., velocity, pressure, and so on) is expressed

as a function of space and time. The Direct Numerical Simulation (DNS) of turbulence

is the most straightforward approach to the solution of turbulent flows (Moin &

Mahesh [73]).

However, we will not be able to perform DNS for real engineering problems

until a few hundred generations of computers have come and gone (Gad-el-Hak [34]).

There are two requirements that a DNS must meet if it is to represent a turbulent

flow. First, all scales of motion need to be captured, in the deterministic sense, by

the size of the grid, which must be no larger than the smallest length scale, called

the Kolmogorov scale, η. In particular, the Reynolds number, Re, should be small

enough to allow the mesh to capture the viscous dissipation scales. Second, all the

significant fluid motions allowed by the Navier-Stokes equations have to be captured.

The domain of the calculation must be at least as large as either the physical domain

or the largest turbulent eddy. A useful measure of this scale is the integral scale (L)
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of the turbulence which is the distance over which the fluctuating velocity remains

correlated. At lease one integral scale is needed in the calculation domain, typically

three integral scales are needed. DNS has faced essential difficulties. Highly accurate,

high-order schemes (spectral methods, for example) tend to have little flexibility in

the handling of complex geometries and of general boundary conditions. Also, to

resolve all scales of motion requires that the number of grid points be proportional to

the 9/4 power of Re, as a result, the cost of computation scales increases as does Re3.

For these reasons, DNS has been limited to simple geometries and to low Reynolds

number cases. Until now, the highest computer power has allowed for solutions of

turbulent flow up to Re ∼ 104 (based on integral scale) with a grid resolution of

∼ 40963 (Kaneda & Ishihara [52]). Many physical phenomena (Fig. 1.2), however,

have much higher Reynolds numbers: for instance, the Reynolds number of a typical

internal combustion engine is ∼ 106, the Reynolds number of a typical gas turbine

engine flow is ∼ 107, the Reynolds number of a typical ocean liner is ∼ 108, and the

Reynolds number of a typical hurricane is ∼ 1011. Turbulence modeling techniques

are obviously needed to solve many practical problems.

Based on the Reynolds averaging method (the long-time average of a quantity

or ensemble average, proposed by Osborne Reynolds, 1842-1912), Reynolds-averaged

Navier-Stokes (RANS) approaches have been the most prevalent until now. The

effect of turbulent fluctuations appears in a Reynolds-stress term that must be mod-

eled if the system is to be closed. Reynolds-stress models are successful (whereas

turbulent viscosity models are not) in calculations that concern flows with signifi-

cant mean streamline curvature, flows with strong swirls or mean-rotating phases,

secondary flows in ducts, and flows with rapid variations in the mean flow. However,
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Reynolds-stress models are not very reliable for flows in which large scale unsteadi-

ness is significant, such as the transitional flow and the flow over bluff bodies, which

involves unsteady separation and vortex shedding. As Pomraning [85] observed, nei-

ther the ensemble-averaged experimental data nor the RANS simulations agree with

any single instantaneous Particle Image Velocimetry (PIV) snapshot of the cylinder

flow. In complex flows, for instance in the flow inside internal combustion engines,

the Reynolds-averaging tends to smear out important structures and therefore may

be inappropriate.

Large scale structures Small scale flows

Figure 1.3: Visualization of the flow in a mixing flow (Brown & Roshko [13],

reprinted with the permission of Cambridge University Press).

Large Eddy Simulation (LES) is a numerical technique for simulating turbulent

flows first introduced by Smagorinsky [94] in 1963. LES requires less computational

power than DNS but more than RANS. Kolmogorov’s (1941) theory of self similarity

implies that large eddies of a flow are dependent on geometry, while smaller eddies

are self similar and have a universal character (Fig. 1.3). Therefore, it becomes

a practice to solve only for large eddies explicitly and to model the effect of the

smaller and more universal eddies on the larger ones. In LES, the large scale motions

of the flow are calculated, while the effects of the smaller universal scales (the so

called subgrid scales) are modeled through the use of a subgrid scale (SGS) model.
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The main advantage of LES over computationally cheaper RANS is the increased

level of detail that LES can deliver. While RANS provides “averaged” results, LES

can predict instantaneous flow characteristics and resolve turbulent flow structures.

In engine research, this is particularly valuable in simulations involving chemical

reactions (Jhavar & Rutland [51]). While the “averaged” concentration of chemical

species may be too low to trigger a reaction, there can be localized areas of high

concentration in which reactions will occur. LES is also significantly more accurate

than RANS for flows involving flow separation or acoustic prediction (You & Moin

[115], Andersson et al. [1]).

This study examines variety SGS models in the LES of rotating turbulence.

Turbulence subjected to system rotation provides a simple configuration for studying

the characteristic features of both anisotropic turbulent flows and model performances

in anisotropic turbulent flows. Thus, this study is important not only because of its

practical applications but also its contribution to fundamental turbulence modeling.

Rotating turbulence is of great importance in engineering (Fig. 1.2(c)) and

geophysics (Fig. 1.2(a)). The most significant application in the first case is the

development and the design of turbo-machinery. Here one has to take into account

the detailed properties of the turbulent fluids, which pass through the device and

are rotated (e.g., by the motion of the turbine blades). A detailed understanding of

rotational effects on flow characteristics is essential for an advanced layout of these

machines. Second, the whole field of geophysics is crucially determined by plane-

tary rotation, which influences both atmospheric and oceanic flows and affects global

climate as well as short-term weather forecasting. Understanding the fundamental
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processes in these fluid layer forms the basis for a detailed analysis of complex phe-

nomena such as the development of climate anomalies like El Niño, the formation of

hurricanes and tidal waves, the spreading of pollutants, and the oceanic circulation

of nutrients.

The Rossby number characterizes the importance of rotational effects. If the

Rossby number is smaller than 1 (Figs. 1.2(a) and 1.2(c)), rotation strongly af-

fects the dynamics and the structures of turbulent flows through the Coriolis force.

Many features of low-Rossby number rotating turbulence are well known. The ten-

dency toward two-dimensionality (Cambon et al. [16, 15], Smith et al. [97]), the

cyclonic/anti-cyclonic asymmetry in favor of cyclones (Smith & Lee [96], Morize et

al. [76]), and the influence of the background rotation on the kinetic energy trans-

fer, including the reduced transfer from large to small scales and the reverse energy

transfer from small to large scales (Bardina et al. [4], Jacquin et al. [49], Mansour et

al. [70], Cambon et al. [15], Yeung & Zhou [113], Smith et al. [97], Morinishi et al.

[74]), are among the most challenging issues.

Many SGS models have been used to simulate rotating turbulence (Deardorff

[31], Piomelli & Liu [82], Zikanov et al. [118]). However, there still exists a need for

a better understanding of SGS models, both because anisotropic characteristics may

influence LES modeling, and because comparative studies of model performance in

rotating turbulence are inadequate. At least two issues should be considered.

• Algebraic eddy viscosity models predict global dissipation fairly accurately

(Deardorff [31], Piomelli & Liu [82]). Through these models, small scales drain

kinetic energy from large scales. However, kinetic energy transfer from small to

large scales is known to occur, especially in anisotropic turbulence. In rotating
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flows, although the rotation term (the Coriolis term) does not explicitly show

up in the kinetic energy equation, rotation has an immediate effect on kinetic

energy transfer and weakens the fundamental property of the energy cascade

(Bardina et al. [4], Mansour et al. [70], Cambon et al. [15]). Eddy viscosity

models may have difficulty capturing this process (Speziale [103], Domaradzki

& Horiuti [32]).

• Most traditional SGS models are based on the assumption that the modeled

small scale turbulence is nearly homogeneous and isotropic. In rotating tur-

bulence, coherent structures (e.g., two-dimensionality, and cyclonic dominance)

are affected by interactions between resonant velocity modes and between near-

resonant modes (Smith et al. [97, 98, 96]). Our recent study found that the

different micro-length scales occur in different directions and that this property

can influence LES modeling (Lu et al. [66]).

1.2 Objective and approach

This study examines the performance of SGS models in order to develop models

better suited to rotating turbulence. Two approaches, a-priori test and a-posteriori

test, are used to achieve this goal.

At the a-priori test level, once a velocity profile is calculated by DNS or mea-

sured in experiment, the actual SGS stresses τij = uiuj − uiuj and the modeled SGS

stresses can be generated and then be compared. The “ ¯ ” represents spatial filtering

at a scale ∆. This comparison can identify the degree to which SGS models reproduce

realistic properties of τij . Clark et al. [25], McMillan et al. [71], and Bardina et al.

[2] are early examples of such studies. Piomelli et al. [83] used the name a-priori
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test to point out that no actual LES is carried out. A-priori test using experimental

data facilitates the study of high-Reynolds number flows. For example, using PIV

data, Liu et al. [64, 65] observed the high correlation property of the Scale Similarity

Model (SSM, Bardina et al. [2]) in isotropic turbulence. In 1996, Menon et al. [72]

compared various SGS models at tensor, vector, and scalar levels using DNS data.

A one-equation model named the subgrid Kinetic Energy Model (KEM, Deardorff

[31]) consistently showed a higher correlation for a range of Reynolds numbers in

comparison to other eddy viscosity models, such as the Smagorinsky Model (SM,

Smagorinsky [94]), and the Dynamic Smagorinsky Model (DynSM, Germano et al.

[39], Lilly [63]).

In our study, we use DNS data at moderate Reynolds and Rossby numbers to

validate models. We consider the flow of an initially very low energy level isotropic

random noise that then undergoes either large scale forcing or small scale forcing.

Such problems have been studied extensively in the past in both experiments and

numerical simulations (Lilly [62], Smith & Waleffe [97]).

In order to develop new models for rotating turbulence, we discuss rotation

effects and examine whether or not the SGS models are consistent with the trans-

formation properties of the SGS stress tensor in a non-inertial frame of reference

undergoing rotation (Speziale [102, 103], Shimomura [93]). Kobayashi & Shimomura

[54] and Horiuti [48] developed several models of rotating turbulence and obtained

encouraging results. These models are consistent with the Material Frame Indiffer-

ence (MFI) requirement for rotating flows. The consistent models are zero-equation

models (e.g., algebraic closures) and not likely to satisfy the requirement that the

trace of the SGS model equal twice the subgrid kinetic energy: τmodel
ii = 2ksgs. Hence,
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we present two new one-equation approaches to LES for rotating turbulence. These

new models are consistent with the constraints of MFI and also satisfy the trace

requirement.

The primary tools that we use for the a-priori study are the regression and

correlation coefficients. In 1979, Clark et al [25] introduced the correlation coefficient,

ρ, to study whether modeled and actual terms are related. If τmodel
ij and τij are totally

unrelated, then ρ(τij , τ
model
ij ) = 0. If there is a linear relation, then ρ(τij , τ

model
ij ) =

1. The correlation coefficient describes the strength of an association between two

variables, and is completely symmetrical. The correlation between τmodel
ij and τij is

the same as the correlation between τij and τmodel
ij .

In this study, we introduce the regression coefficient as another coefficient to

examine the performance of models. The regression coefficient represents how much

τmodel
ij changes with any given change of τij and can be used to construct a regression

line on a scatter plot of the two variables. For high-correlation models (ρ > 0.6 over a

wide range of filter sizes), such as the SSM and the Gradient Model (GM, Clark et al.

[25]), the regression coefficient is often more useful than the correlation coefficient. It

gives a more complete description of the relationship between the two variables. A

unit regression coefficient means that the modeled variable has the same magnitude

as the variable obtained from the filtered DNS.

At the a-posteriori test level, we systematically investigate and compare the

characteristic behaviors of SGS models in the actual LES of rotating turbulent flows.

We test the following SGS models: the SM; the DynSM; the SSM and its mixed ver-

sion, which is known as the Mixed Scale Similarity Model (MixSSM, Zang et al. [116],

Vreman et al. [106]); the KEM; the Dynamic Structure Model (DSM, Pomraning &
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Rutland [85, 86], Chumakov & Rutland [24]); and two new mixed one-equation mod-

els, Mixed Gradient type Consistent Dynamic Structure Model (MixGCDSM) and

Mixed Similarity type Consistent Dynamic Structure Model (MixSCDSM). These

models are important representatives of the available SGS models.

We work with two configurations of LES to assess these SGS models. We com-

pare the LES results in the first configuration with filtered DNS results. To facilitate

physical understanding and modeling, we isolate the rotation from other effects (such

as forcing) and perform purely decaying turbulence. The Reynolds numbers in this

configuration are low, which is necessary for the current computer capacity to per-

form an accurate DNS. The simulations in the second configuration are performed

at a higher Reynolds number than in the first configuration. Flows are forced at

both large scales and intermediate scales. We judge the LES results according to the

anisotropic level of rotating turbulence including the cyclone structure, the kinetic

energy transfer from small to large scales, and the quasi two-dimensional structure.

The second configuration is a more rigorous assessment, because traditional models

fail to capture those features of rotating turbulence.

1.3 Outline

The remainder of this thesis is divided into seven chapters. Chapter 2 reviews

the literatures on the pseudo-spectral method and basic LES concepts, and discusses

and criticizes common SGS models. Chapter 3 covers conceptual issues, identifies

strengths of new models, and introduces new SGS models for simulating rotating

turbulence. Chapter 4 reviews previous methods for the a-priori test, and introduces
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the regression coefficient. Chapters 5 and 6 present a-priori and a-posteriori results

of the SGS models. Chapter 7 summarizes our research.
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Chapter 2

Literature review

In order to solve the Navier-Stokes equations and the LES equations in a rotat-

ing frame, a pseudo-spectral method has been adopted in this research. This chapter

begins with a review of the literature on this approach, then summarizes representa-

tives SGS models. We then review work on the Rossby number, anisotropic features

of rotating turbulence, and previous LES studies of rotating turbulence.

2.1 Pseudo-spectral method and forcing schemes

Since the invention of the modern digital computer in the 1940s, different numer-

ical approaches have been proposed to solve Ordinary Differential Equations (ODEs)

and Partial Differential Equations (PDEs). Spectral methods are one of four impor-

tant techniques used in applied mathematics and scientific computing to numerically

solve PDEs, which came into their own roughly in successive decades

1950s : finite difference methods

1960s : finite element methods

1970s : finite volume methods, spectral methods

Naturally, the origins of each method can be traced further back. For spectral meth-

ods, some of the ideas are as old as interpolation and expansion, and algorithmic

developments arrived with Lanczos as early as 1938 (Lanczos [58, 59]). The earliest
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applications of the spectral method to PDEs addressed spatially periodic problems

and stemmed from work by Kreiss & Oliger [57] (who called it the Fourier method)

and Orszag & Patterson [78] (who termed it pseudo-spectral). Two landmarks of the

early spectral method literature are the short book by Gottlieb & Orszag [42], and

the monograph by Canuto et al. [17].

Spectral methods, which have strengths in exponential convergence behavior

and reduced numerical damping and dispersion properties, are an increasingly pop-

ular tool for solving ODE- and PDE-related problems in fluid mechanics, quantum

mechanics, vibrations, linear and nonlinear waves, and complex analysis. The most

frequently used expansions are trigonometric polynomials, Chebyshev polynomials,

and Legendre polynomials. For example, spectral methods write the solution as a

Fourier series (Eqn. (2.1) - 1D Fourier & inverse Fourier transfer example in a dis-

crete manner), substituting this series into the PDEs to get a system of ODEs in the

time-dependent coefficients of the trigonometric terms in the series (written in com-

plex exponential form), and using a time-stepping method, such as a Runge-Kutta

method, to solve those ODEs.





u(n) =
∑N/2−1

k=−N/2 û(k) e
2πi
N

kn , n = 0,...,N − 1

û(k) = 1
N

∑N−1
n=0 u(n) e

−2πi
N

kn , k = −N/2,...,N/2 − 1.

(2.1)

As an example, in order to solve the incompressible Navier-Stokes equations

∂ui

∂xi

= 0 ,
∂ui

∂t
+ uj

∂ui

∂xj

= − ∂p

∂xi

+ ν
∂2ui

∂xj∂xj

+ fi , (2.2)



16

quantities need to be transferred into Fourier space

ui 7→ ûi , (2.3)

uj
∂ui

∂xj
7→ N̂.L.i (nonlinear term) , (2.4)

p 7→ p̂ (pressure term) , (2.5)

∂2ui

∂xj∂xj
7→ −k2ûi (diffusion term) , (2.6)

fi 7→ f̂i (forcing term) , (2.7)

where the wave number vector is ~k = (k1, k2, k3), and the magnitude of the wave

number is k =
√

k2
1 + k2

2 + k3
3. We solve the pressure term using the incompressible

constraint, and then remove it from the momentum conservation equations to give

∂

∂t
ûi = −νk2ûi + Pij

(
f̂j − N̂.L.j

)
, (2.8)

where the tensor Pij = δij−kikj/k
2 is the classical solenoidal projector and represents

projections onto the plane perpendicular to ~k in Fourier space. In pseudo-spectral

methods, the nonlinear term (N̂.L.i) is not directly calculated in Fourier space, but

computed by the Fourier transfer of uj
∂ui

∂xj
, which is calculated by the multiplication

of ui and ∂ui

∂xj
in physical space. Inverse Fourier transfer of ûi yields ui, and inverse

Fourier transfer of −i ûikj (where i =
√
−1) yields ∂ui

∂xj
. The advantage of pseudo-

spectral methods for the nonlinear term is in the reduced multiplications from O(N2)

to O(N log2 N), where N is the number of total grid points (Canuto et al. [17]).

Orszag & Patterson [78] laid the foundations of the pseudo-spectral method for

turbulent studies at the National Center for Atmospheric Research in 1972. They

performed a 323 computation of isotropic turbulence at a Reynolds number (on the

basis of Taylor micro-scales) of 35. The next major step was taken by Rogallo [90],
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who, in 1981, combined a transformation of the governing equations with an extension

of the Orszag-Patterson algorithm to compute homogeneous turbulence subjected to

mean strain. By comparing the results with both theoretical and experimental data,

Rogallo evaluated several turbulence models that set the standard for the DNS of

homogeneous turbulence.

In this research, the DNS of rotating flows is based on the conservation laws of

incompressible, homogeneous flow in a rotating frame, which are described as

∂ui

∂xi
= 0 ,

∂ui

∂t
+ uj

∂ui

∂xj
= − ∂p

∂xi
− 2ǫijkΩjuk + ν

∂2ui

∂xj∂xj
+ fi , (2.9)

where p is the effective pressure, ν is the kinematic viscosity, fi is a forcing term, and

Ωi is the (constant) rotation rate. Without loss of generality, we chose
−→
Ω = (0, 0, Ω).

Thus the Coriolis force can be simplified as −2Ωǫi3kuk.

We simulated DNS validation cases using a pseudo-spectral code, in which Smith

et al. [97, 98, 96]) used a linear eigen-mode algorithm based on helical decomposition

studies (Waleffe [109, 110]). Because the inviscid (ν → 0), linear (uj
∂ui

∂xj
→ 0) limit

of equations (2.9) have wave solutions, called inertial waves (Greenspan [43], Smith

& Waleffe [97]). It is particularly appropriate to represent the velocity field as a

superposition of wave solutions with amplitude bs(~k, t),

~u =
∑

~k

∑

s=±1

bs(~k, t)~hs(~k)ei(~k·~x−ωst) , (2.10)

where the wave frequency is ωs(~k) = 2Ωsk3

k
, and ~hs = ~k × ~Ψ + is~Ψ with s = ±1,

~Ψ = (~k × ~ez)/|~k × ~ez| and ~ez = (0, 0, 1). The wave with s = +1 is right-handed and

propagates in the ~k direction, while the s = −1 wave is left-handed and propagates
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in the −~k direction. The Navier-Stokes equations (2.9) in a rotating frame then yield

(
∂

∂t
+ νt2

)
bs(~k, t) =

1

2

∑
C

skspsq

~k ~p ~q
b∗s(~p, t)b

∗
s(~q, t)e

i(ωsk
+ωsp+ωsq )t , (2.11)

where bs(~k, t) = b∗s(−~k, t), with ∗ denoting a complex conjugate. The sum is over

all ~p, ~q such that ~k + ~p + ~q = 0 and over all sp, sq, with C
skspsq

~k ~p ~q
= (sqq − spp) ×

(
~h∗

s(~p) ×~h∗
s(~q)

)
· ~h∗

s(
~k)/2 . Note that this code is similar to codes used in other

studies (Yeung & Zhou [113], Morinishi et al. [74, 75]). In these codes, the linear

viscosity (diffusion) and the Coriolis terms are included with an integrating factor,

which helps increase numerical stability and decrease numerical diffusion. The time

advance in wave number space was carried out through the use of an explicit third

order Runge-Kutta scheme (see appendix A).

We consider flow under the influence of either large scale or small scale forcing.

For large scale forced isotropic turbulent runs, we compared the results using both

the Overholt-Pope forcing scheme [79] and the Gaussian white-noise forcing scheme

(Smith et al. [95, 97, 98]). The Overholt-Pope forcing scheme defines the forcing in

Fourier space as

f̂i =
fk(t)

τ
ûi , (2.12)

where τ is the forcing time scale, and the forcing coefficient fk(t) is a solution of the

dynamic equation

dfk(t)

dt
= P

(−1

τ
ln

(
E(k)

Em(k)Zf(k)

)
− ααcfk(t)

)
= P(Sk) , (2.13)

where E(k) is the kinetic energy spectrum, α is a nondimensional damping coefficient,

αc is the critical damping coefficient, Em(k) is the model spectrum, and Zf is a forcing
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cut-off function to be defined. The operator P is defined as

P(Sk) =





Sk, forfk > 0

Sk, forfk = 0 and Sk > 0

0, , forfk = 0 and Sk 6 0 .

(2.14)

The forcing cut-off function is defined as

Zf(k; kf , ζ) = tanh

(
kf − k

ζkf

H(kf − k)

)
, (2.15)

where H is the Heaviside function. The time scale coefficient is

T ∗
f =

τ

τη
, (2.16)

where τη = K/ε denotes the eddy turn-over time. K is the total kinetic energy,

and ε is the dissipation rate of kinetic energy. The case of isotropic turbulence has

been performed using the Overholt-Pope scheme with parameters ζ = 0.25, T ∗
f = 0.4,

αc = 2
√

2/τ and α = 0.7. The results for isotropic turbulence are insensitive to the

forcing scheme, but the approach to the statistically steady state was faster when we

used the Overholt-Pope forcing.

In rotating and other anisotropic turbulent flows, the Gaussian white-noise forc-

ing allows for the study of the nonlinear interactions with minimal bias from the

forcing. Thus for our rotating turbulent runs, we used white-noise forcing with a

Gaussian spectrum

F (k) = εf
exp(−0.5(k − kf)

2/σ2)

(2π)1/2σ
, (2.17)

where the forcing peak wave number is kf , the standard deviation is σ = 1 and the

kinetic energy input rate is εf = 1.
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In order to study flow behavior over a wide inertial range, the dissipation at

small scales was modeled using hyper-viscosity (−1)pu+1νu(∇2)pu~u with pu = 8 (Borue

& Orszag [10, 11]). In some cases, we added hypo-viscosity (−1)pi+1νi(∇2)−pi~u with

pi = 2 to destroy box-size vortices. Drawing on both the work done by Chasnov [20]

and dimensional analysis, we used

νu = 2.5

(
E(kmax, t)

kmax

)1/2

k2−2pu
max , νi =

(
E(kmin, t)

kmin

)1/2

k2+2pi

min , (2.18)

where kmax is the highest available wave number, which is set according to the 2/3

de-aliasing rule (Canuto et al. [17]), and where kmin is the smallest wave number

(kmin = 1 on our isotropic grid).

2.2 LES and SGS models

This section gives a chronological review of Large Eddy Simulation (LES) for-

malism, along with various subgrid scale (SGS) models developed since 1963.

2.2.1 LES equations for rotating flow

In industrial and environmental applications, where Reynolds numbers are usu-

ally very high, direct numerical simulation of turbulence is generally impossible, be-

cause the very wide range that exists between the largest and the smallest dissipative

scales cannot be explicitly simulated even on the largest and most powerful comput-

ers. Fortunately, of greater interest are the larger scales of turbulent flows: those

that control turbulent diffusion of momentum or scalar (e.g., concentration of chem-

ical species, and heat). In the LES approach, an implication of Kolmogorov’s (1941)

theory of self similarity is that the large eddies of the flow are dependent on geometry

whereas the small scales are more universal. This feature enables one to explicitly
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solve for the large scale motions, whereas the effect of the small scales is modeled ac-

cording to a so-called SGS model (Rogallo & Moin [91]). The LES approach comprises

the following major steps

1. Filtering separates the large scales from the small scales. The resolved compo-

nent f(~x) is derived via the convolution integral f(~x) =
∫

f(~x′)G(~x, ~x′; ∆) d~x′

with the filter function G(~x, ~x′; ∆). A residual component is defined as, f ′ =

f − f . The resolved velocity field ui, which is three-dimensional and time-

dependent, represents the motions of the large eddies. The residual velocity

field represents the small scale motions. Our study has employed the following

filters

Gaussian: G = K1 exp

(
−6

|~x − ~x′|2
∆2

)
(2.19)

cut-off: G = K2

∏

i=1...3

sin(π(xi − x′
i)/∆)

π(xi − x′
i)/∆

(2.20)

top hat: G =

{
K3 if |xi − x′

i| < 1
2
∆, i = 1...3

0 otherwise
(2.21)

triangle: G =

{
K4(∆ − 2|~x − ~x′|) if |xi − x′

i| < 1
2
∆, i = 1...3

0 otherwise
(2.22)

The coefficient Ki is a normalization factor, which ensures that the integral

of the filter equals unity (in the discrete sense). Figure 2.1 demonstrates the

easiest-to-understand scenario using the kinetic energy spectrum of a typical

isotropic turbulence.

2. Applying grid filtering to the Navier-Stokes equations (2.9) gives the LES equa-

tions including the SGS stress tensor in the momentum equations

∂ui

∂xi
= 0 ,

∂ui

∂t
+ uj

∂ui

∂xj
= − ∂p

∂xi
− 2Ωǫi3kuk + ν

∂2ui

∂xj∂xj
+ f i −

∂τij

∂xj
, (2.23)
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Figure 2.1: Three-dimensional kinetic energy spectrum (−�−) of a 1283 isotropic

turbulence. We obtained the LES resolved kinetic energy spectrum (−♦−) by

using Gaussian filtering.

where the SGS stress tensor is τij = uiuj − uiuj . On purpose, we have not

subtracted the trace.

3. Closure is obtained through modeling of the SGS stress tensor. The following

section provides a brief overview of SGS models. On the basis of some math-

ematical and physical constraints, we developed new one-equation models for

rotating turbulence (see chapter 3).

4. Finally, the LES equations are numerically solved for the resolved field, which

provides an approximation of the large scale motions in one realization of the

turbulent flow.
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2.2.2 Overview of traditional SGS models

In the LES of incompressible turbulent flows, we require a SGS model for the

SGS stress tensor. This term can be classically decomposed into three parts, the

modified Leonard term LM
ij , the modified cross term CM

ij , and the modified SGS

Reynolds stress term RM
ij (Germano [38], Pope [87])

τij = LM
ij + CM

ij + RM
ij , (2.24)

where LM
ij = uiuj − uiuj , CM

ij = uiu
′
j + u′

iuj − uiu
′
j − u′

i uj , RM
ij = u′

iu
′
j − u′

i u
′
j.

In addition, consider the Gaussian filter, which is an isotropic filter (G(~x, ~x′; ∆) =

G(~r = ~x − ~x′; ∆)) and has the second moments

∫
rirjG(~r; ∆) d~r =

∆2

12
δij , (2.25)

and finite higher moments. This filter is applied to a turbulent flow, with a filter

width of ∆. For a given ~x, and for ~r on the order ∆, the velocity U(~x + ~r) can be

expanded in the Taylor series

ui(~x + ~r) = ui(~x) +
∂ui

∂xk
rk +

1

2!

∂2ui

∂xk∂xl
rkrl... , (2.26)

where the velocity gradients are evaluated at ~x. Spatial filtering shows that the

filtered velocity field is

ui(~x) = ui(~x) +
∆2

24

∂2ui

∂xk∂xk

+ O(∆4) . (2.27)

A similar procedure (Leonard [60], Clark et al. [25], Horiuti [45], Pope [87]) shows

that the SGS stress tensor is (to leading order)

τij = uiuj − uiuj =
∆2

12
Gij + O(∆4) , (2.28)
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where the gradient term is defined as

Gij =
∂ui

∂xa

∂uj

∂xa
. (2.29)

As will be explained, some SGS models make explicit use of the decomposition (2.24)

or the Taylor expansion (2.28). The modified Leonard term, the modified cross term

and the gradient term will surface frequently in subsequent discussions.

2.2.2.1 Smagorinsky model

Based on the Boussinesq hypothesis [12], a common class of SGS models de-

scribes the trace-free part of the SGS tensor using the form

τij −
τkk

3
δij ≈ −2νtSij , (2.30)

where the strain rate tensor is Sij = 1
2
(∂ui/∂xj + ∂uj/∂xi) and νt is the eddy vis-

cosity. Several different models have been used for the eddy viscosity. Based on the

equilibrium assumption of decaying isotropic turbulence that the entire dissipation is

statistically equal to the kinetic energy that small scales receive from resolved scales,

the first expression for the eddy viscosity νt was introduced in 1963 by the meteorolo-

gist Smagorinsky [94]. According to the Smagorinsky Model (SM), the eddy viscosity

is determined as

νt = C2
s∆

2|S| , (2.31)

where |S| = (2SmnSmn)1/2 and Cs is a dimensionless coefficient. The value of Cs can

be determined from isotropic turbulence decay and analysis (Lilly [61], Pope [87]); if

the cutoff, kc = π/∆, lies within a k−5/3 Kolmogorov cascade E(k) = CKε2/3k−5/3

(where CK is the Kolmogorov constant), one can adjust the constant Cs, which takes
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values between 0.1 and 0.2, so that the ensemble averaged subgrid kinetic energy

dissipation is identical to ε. A Kolmogorov constant of 1.4 obtained through mea-

surements in the atmosphere (Champagne [19]) yields Cs ∼ 0.18. In this research, we

adopt Cs = 0.18 for high-Reynolds number (regarding LES resolutions) turbulence

(Lilly [61]).

Smagorinsky was simulating a two-layer quasi-geostrophic model in order to

represent large (synoptic) scale atmospheric motions. Limited by the computational

power of the time, in 1970, Deardorff [30] was the first to implement the SM for the

wall layer of a channel flow at a finite Reynolds number. The SM assumes that the

principal axes of the strain rate tensor are aligned with those of the SGS stress ten-

sor. However, at the a-priori test level, the SGS stress tensor correlates very poorly

with the rate of strain tensor (Clark et al. [25], Liu et al. [64], Menon et al. [72]).

Further, the SM is purely dissipative - kinetic energy transfers only from resolved

scales to subgrid scales. For numerical stability, this is a desirable characteristic of

the model. However, the actual SGS stress may also facilitate kinetic energy transfer

from subgrid to resolved scales in a process referred to as “backscatter”. Further, in

anisotropic turbulence there can be a net transfer of kinetic energy from subgrid to

resolved scales (Smith et al [97, 98]). Also, the SM has turned out to be too dissipa-

tive for many studies (Friedrich & Nieuwstadt [36], Vreman et al. [108]), including

Smagorinsky’s research in 1963 (Smagorinsky [94]), in which the use of hyper-viscosity

like (high-order Laplacian) dissipative operators is preferred (Basdevant & Sadourny

[8], Ferziger [35]). In addition, for complex flows, it may not be possible to find a

universal coefficient that is appropriate for the entire domain at all times.
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2.2.2.2 Gradient model and scale similarity model

Since the 1970s, the Taylor expansion (2.28) of the SGS stress has been studied

(Leonard [60], Clark et al. [25]). The Gradient Model (GM, sometimes referred to as a

“nonlinear model” or “Clark model”) takes the leading term of this Taylor expansion,

by which the SGS stress is modeled as

τij ≈
∆2

12
Gij . (2.32)

The GM has several advantages: it is computationally efficient because it is a

zero-equation model and does not require a second filtering; it satisfies Galilean in-

variance (Speziale [102, 103]) and modeled stresses are consistent with the constraints

of Material Frame Indifference (see section 3.1); at the a-priori test level, it success-

fully predicts the SGS stress tensor over a wide range of filter sizes (ρ > 0.6, Liu et

al. [64]); and it allows for “backscatter.” However, simulations with the pure GM

appear to be unstable (Vreman et al. [107]).

The eddy viscosity closures (2.30) assume a one-to-one correlation between the

SGS stress tensor and the strain rate tensor. The analysis of fields obtained from

DNS has displayed very little correlation between the two tensors (Clark et al. [25],

McMillan & Ferziger [71]). Liu et al. [64] confirmed this lack of correlation for a much

higher Reynolds number flow using the experimental data taken in the far field of a

turbulent round jet. This disadvantage led Bardina [2] to propose the original scale

similarity model in 1980. This model is based on the assumption that the SGS stress

is similar to the smallest resolved stress; thus, the SGS stress can be approximated

from the resolved field. We have studied a modified version of the Scale Similarity
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Model (SSM) which satisfies Galilean invariance (Speziale [102, 103])

τij ≈ CLLM
ij , (2.33)

where CL is a dimensionless coefficient - the so-called similarity coefficient, and we

used CL = 1 in this study.

In LES, the SSM and the GM perform similarly. At the a-priori test level, the

modeled SGS stress deduced from (2.33) exhibits a good correlation (ρ > 0.6) with

the SGS stress over a wide range of filter sizes. The SSM also allows for “backscatter.”

When implemented in LES, however, the SSM hardly dissipates kinetic energy and

appears to be unstable (Bardina [2, 3]). In contrast with the GM, the implementation

of the SSM requires a second filtering operation on the resolved field, and the SSM

is not MFI-consistent at the tensor level.

2.2.2.3 Dynamic Smagorinsky model

The limitations of the SM have led to the formulation of SGS models that are

more general. In the early 1990s, Germano et al. [39] and Lilly [63] proposed the

dynamic procedure to compute the model coefficient; this model is called the Dynamic

Smagorinsky Model (DynSM). In this model, the trace-free SGS stress is modeled as

τij −
τkk

3
δij ≈ −2CD(∆)2|S|Sij . (2.34)

The Germano [39] identity defines a test filter whose width ∆̃ is larger than the

grid filter-width ∆ (typically ∆̃ = 2∆). The subtest scale stress Tij = ũiuj − ũiũj is

similarly approximated according to

Tij −
Tkk

3
δij ≈ −2CD∆̃2|S̃|S̃ij . (2.35)
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Figure 2.2: Schematic illustration of grid- and test-filtering for the dynamic model

employing a cut-off filter.

Subtracting the test scale filtering of (2.34) from (2.35) gives

Lij −
Lkk

3
δij ≈ CDMij , (2.36)

where Lij = ũiuj − ũiũj and Mij = 2

(
∆2|̃S|Sij − ∆̃2|S̃|S̃ij

)
. The error is eij =

Lij− Lkk

3
δij−CDMij . When using the least-square-error approach, ∂(eijeij)/∂CD = 0,

the dynamic coefficient CD is found to be

CD =

(
LijMij

MklMkl

)
. (2.37)

The DynSM has been applied to many flows with good results, including channel

flow (Piomelli [81]), rotating channel flow (Piomelli & Liu [82]), and mixing layer

(Ghosal & Rogers [41], Vreman et al. [108]). Unfortunately, analysis of DNS data

(Lund et al. [69]) and experimental data (Liu et al. [64, 65]) has shown that the
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CD predicted by (2.37) varies strongly in space and contains a significant fraction of

negative values. Allowing negative values for CD is an advantage of the model because

it implies kinetic energy transfers from subgrid to resolved scales in physical space.

However, very large negative values of the eddy viscosity constitute a destabilizing

process in a numerical simulation, and a nonphysical growth of the resolved scale

kinetic energy has often been observed (Lund et al. [69]). Thus, the procedure of

averaging CD over directions of statistical homogeneity has been introduced, and

this procedure has yielded good agreement with both experimental and DNS results

(Piomelli et al. [81, 82], Vreman et al. [108]).

2.2.2.4 Mixed SGS model

It has been noted by Bardina et al. [3] that the SSM alone is not dissipative

enough. Thus, a linear combination of the SSM and an eddy viscosity model has been

introduced. In 1993, Zang et al. [116] proposed a dynamic mixed approach based on

the Germano [39] identity to calculate the model coefficient. In 1994, Vreman et al.

[106] introduced an improved version removing some mathematical inconsistencies.

The Mixed Scale Similarity Model (MixSSM) is expressed as

τij ≈ CLLM
ij − 2CSSM

D ∆2|S|Sij . (2.38)

The dynamic model coefficient CSSM
D is obtained by integrating this model into the

Germano [39] identity

CSSM
D =

(
(Lij − HSSM

ij )Mij

MklMkl

)
, (2.39)

where the tensor HSSM
ij is defined as

HSSM
ij =

˜̃
uiũj −

˜̃
ui

˜̃
uj − (ũiuj − ũiuj) . (2.40)
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The Mixed Gradient Model (MixGM) is formulated as

τij ≈
∆2

12
Gij − 2CGM

D ∆2|S|Sij . (2.41)

The dynamic model coefficient CDM
D is obtained through

CGM
D =

(
(Lij − HGM

ij )Mij

MklMkl

)
, (2.42)

where the tensor HGM
ij is defined as

HGM
ij =

∆̃2

12

∂ũi

∂xa

∂ũj

∂xa

− ∆2

12

∂̃ui

∂xa

∂uj

∂xa

. (2.43)

Mixed models combine the strengths of similarity (or gradient) models and eddy

viscosity models. This approach has been proven a great success in many applications,

such as the flows of a lid-driven cavity (Zang et al. [116]), a mixing layer (Vreman et

al. [108]), and rotating turbulence (Kobayashi & Shimomura [54]). It must be noted

that the viscosity term does not degrade the a-priori results (Liu et al. [65]), because

typically the magnitude of the first term in the models is significantly higher than

that of the viscosity term (' 50 times when measured in the L2-norm).

2.2.2.5 Subgrid kinetic energy model

The SM and its dynamic version (DynSM) use strain rate, |S|, to represent the

amount of subgrid kinetic energy in their SGS model formulas (2.31) & (2.34). They

do not explicitly contain any information regarding the subgrid kinetic energy. Thus,

a one-equation eddy viscosity model, the subgrid Kinetic Energy Model (KEM), was

proposed for LES of turbulent flows (Carati et al. [18], Ghosal et al. [40]). It must

be noted that since 1973, Deardorff [31] has used the KEM to study an atmospheric

boundary layer turbulence. However, it was not until the 1990s that detailed studies
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on its performance were achieved. The KEM has been evaluated at both the a-

priori level and the a-posteriori level (Carati et al. [18], Ghosal et al. [40], Kim &

Menon [53], Menon et al. [72]), and it has been widely used in industrial applications

(Davidson et al. [27, 28, 29], Krajnović et al. [55, 56], Sohankar et al. [99, 100]). The

full SGS stress is modeled as

τij ≈
2

3
ksgsδij − 2νkSij , (2.44)

where ksgs = 1
2
(ukuk − ukuk) = τkk/2 is the SGS kinetic energy, and the SGS eddy

viscosity is νk = Ck

√
ksgs∆. Note that using the Cauchy-Schwarz inequality, |a ·b| 6

||a|| · ||b||, and the definition of the SGS kinetic energy, it can be shown that the SGS

kinetic energy is always positive for a non-negative filter, such as the Gaussian filter,

the top hat filter, and the triangle filter (Ghosal et al. [40]).

To implement the model, there must be a method for determining ksgs. The

exact SGS kinetic energy equation is expressed as

∂ksgs

∂t
+ uj

∂ksgs

∂xj
= −τijSij − ε + ν

∂2ksgs

∂xj∂xj

−
(

ui
∂P

∂xi
− ui

∂P

∂xi

)
− ∂

∂xj

(
1

2
τuiuiuj

− uiτij

)
(2.45)

where ε = ν
(

∂ui

∂xj

∂ui

∂xj
− ∂ui

∂xj

∂ui

∂xj

)
, and τuiuiuj

= uiuiuj − uiui uj . Appendix B gives

a derivation of equation (2.45). An approximation for the SGS kinetic energy is

obtained by solving the transport equation

∂ksgs

∂t
+ uj

∂ksgs

∂xj
= −τij

∂ui

∂xj
− Cc

k
3/2
sgs

∆
+

∂

∂xj

[(
νk

σk
+ ν

)
∂ksgs

∂xj

]
. (2.46)

Here, the three terms on the right-hand side represent, respectively, the production

(−τij(∂ui/∂xj) = −τijSij), the dissipation (ε), and the diffusion of the SGS kinetic
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energy. The typical values for the constants are Ck = 0.05, Cc = 1.0 and σk = 1.0

(Yoshizawa & Horiuti [114]).

An important feature of this model is that it does not make the assumption

of local balance between the subgrid scale kinetic energy production and dissipation

rate. In addition, it improves the accuracy of SGS stress modeling in comparison to

other eddy viscosity models (Menon et al. [72]). Also, the use of a transport equation

for the subgrid scale kinetic energy may allow for coarser grids than can be used for

a comparable problem with a zero-equation eddy viscosity model (Menon et al. [72]).

However, the KEM does not improve the accuracy of off-diagonal components of SGS

stress, τij, (i6=j); the correlations of off-diagonal components are generally less than

0.3 (Lu et al. [66]). In addition, although numerical stability is improved using the

positive viscosity (νk > 0), which results in the kinetic energy transfers from resolved

to subgrid scales, this model is an eddy-viscosity model and cannot predict reverse

kinetic energy transfers without requiring that Ck be a function of time and space.

2.2.2.6 Dynamic structure model

Ideally, a model is expected to accomplish three main objectives: (i) it can repre-

sent the SGS stress closely, so that it can give high correlations between the modeled

stress and the actual SGS stress; (ii) it yields proper dissipation of kinetic energy

from resolved scales and allow for “backscatter”; and (iii) it does not require a-priori

knowledge to set model constants. In 2000, to address some of the mathematical and

conceptual difficulties in SGS models, Pomraning & Rutland [85, 86] introduced a dy-

namic one-equation non-viscosity model, the Dynamic Structure Model (DSM). The

DSM uses a tensor form of the SGS stresses: τij = Cijksgs. Note that Cij must satisfy
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Cii = 2. Assuming the same form at the test filtering level, Tij = ũiuj − ũiũj = CijK,

and integrating into the Germano [39] identity, one finds

Tij − τ̃ij = ũiuj − ũiũj = CijK − C̃ijksgs ≈ Cij

(
K − k̃sgs

)
. (2.47)

For this model, the structure of the SGS stress tensor is extracted from the Leonard

term, and SGS kinetic energy helps predict the magnitude of SGS stress. For equal

test and grid filter sizes, the DSM reduces to an algebraic model for the SGS stress

tensor of the form

τij ≈
(

LM
ij

LM
mm

)
2ksgs . (2.48)

The model is a one-equation model that needs a modeled SGS kinetic energy equation

(2.46) to complete it.

The DSM has the advantages of both one-equation model and scale similarity

model. The DSM does not assume the local balance between the subgrid scale ki-

netic energy production and the dissipation rate. This assumption is used to obtain

the model coefficient for the SM. The model expression (2.48) does not include any

coefficient. Therefore, the model does not require a-priori knowledge. Similar to the

KEM, in a physical system, if all the kinetic energy available in the subgrid scales is

removed, the modeled SGS stress will reach zero, thus quenching the effects of subgrid

scales including reverse kinetic energy transfers. As expected, the DSM improves the

accuracy of the SGS stress modeling by giving generally high correlations (ρ > 0.6).

The DSM uses the Leonard term to model the structure of the SGS stress, so the

model expression naturally satisfies the Galilean invariance. However, it is not MFI-

consistent with the SGS stress. In chapter 3, we will discuss this problem in detail.
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Many researchers have attempted to develop MFI-consistent models to overcome this

problem (Shimomura [93], Kovayashi & Shimomura [54], Horiuti [48], Lu et al. [66]).

2.3 Rotating turbulence

In rotating turbulence, rotational effects enter through the Coriolis term in the

Navier-Stokes equations (2.9). Many studies have noted both the development of

anisotropy and the possible transition toward a quasi two-dimensional state. This

section will review some well-known related facts.

2.3.1 Rossby numbers

Rotation rate is an external parameter. In order to study the importance of

rotational effects and to compare the inertial force with the Coriolis force, researchers

study the Rossby number, which characterizes the dimensionless ratio of the rotation

time scale (the inverse of the Coriolis parameter 2Ω) to a nonlinear time scale. Several

different Rossby numbers can be defined, depending on how one chooses to estimate

the nonlinear time scale. With a nonlinear time scale based on the parameters of the

Gaussian forcing (2.17), one Rossby number is defined as

RoG =
(εfk

2
f)

1/3

2Ω
. (2.49)

In addition, a macro-scale Rossby number RoL and a micro-scale Rossby number

Roω3 are defined as

RoL = u′/(2ΩL) , Roω3 = ω′
3/(2Ω) . (2.50)

In these expressions, u′ is the root-mean-square (RMS) velocity fluctuation, ω′
3 is the

RMS vorticity in the z-direction, and L = u′K/ε denotes a typical length scale, where
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K is the total kinetic energy, and ε is the dissipation rate of the total kinetic energy

K. When the Rossby number is large (either because Ω is small; or because L is

small, i.e., for small scale motions such as flow in a bathtub; or for large speeds), the

effects of rotation can be neglected. A small Rossby number indicates that the effects

of rotation are comparably large.

We use the Rossby number as a criterion for considering the rotational effects

on the modeling of the SGS stress. The Rossby number under ordinary conditions

(walking speed u′ = 5 [MPH ], L = 1 [m], planetary rotation) is about 15, 000.

Lumley [67] stated that “the rotational effects on Reynolds stress can be disregarded

and the principle of MFI is quite justified under ordinary conditions.” Many physical

phenomena (Figs. 1.2(a) and 1.2(c)), however, do not have a large Rossby number, for

instance, the Rossby number of a typical hurricane is ∼ 1, and the Rossby number of

a typical gas turbine engine flow is ∼ 0.3. In our study, rotating flows are performed

at small micro-scale Rossby numbers ∼ 0.1, which is an approximate Rossby number

for flows in the Gulf Stream, and for synoptic scale flows at mid-latitudes (Pedlosky

[80], Smith & Lee [96]). Speziale [103] has shown that when Ω → ∞ (Ro → 0), eddy-

viscosity models, which are MFI-inconsistent with the SGS stress, have difficulties

predicting kinetic energy transfers between resolved and subgrid scales.

There are several challenges in the LES of rapidly rotating flow with Rossby

numbers less than unity. Accurate computations will reproduce at least three im-

portant features (some more prominent in forced flow as compared to decaying tur-

bulence): (i) significant net transfer of kinetic energy from small to large scales; (ii)

the generation of large scale vortical columns, with the asymmetry of cyclones over

anti-cyclones; and (iii) a tendency toward two-dimensional and two-component flow,



36

with much lower levels of kinetic energy in the velocity component parallel to the

rotation axis. Furthermore, studies have suggested that numerical simulations are

restricted by resolution constraints to moderately small Rossby numbers (Cambon et

al. [15], Smith & Lee [96]). With guidance from previous studies, we have performed

simulations over a range of Rossby numbers 0.1 < Roω3 < 0.4 (Bartello et al. [7]),

RoL < 1 (Cambon et al. [15]) and RoG ≈ 0.1 (Smith & Lee [96]).

2.3.2 Anisotropy of rotating turbulence

Turbulent flow subject to solid-body rotation is of interest because it has a

wide range of applications in engineering science, geophysics and astrophysics. Many

studies have been done trying to explain the behavior of rotating turbulence, including

experiments (Hopfinger et al. [44], Jacquin et al. [49], Baroud et al. [5, 6], Morize

et al. [77, 76]), theoretical analysis (Yanase et al. [111], Cambon et al. [16, 15],

and Smith et al. [97, 96] ), and numerical simulations (Squires et al. [104], Bartello

et al. [7], Cambon et al. [14], Piomelli & Liu [82], Yeung & Zhou [113], Horiuti

[47], Morinishi et al. [74], Kobayashi & Shimomura [54], Yang & Domaradzki [112]).

Compared with isotropic turbulence, rotating turbulence has various special features

in terms of kinetic energy transfer, energy spectra, and spatial structure.

Inhibition of the energy cascade

It is well known that rotation suppresses the turbulent kinetic energy transport

to smaller scales (Bardina et al. [4], Jacquin et al. [49], Mansour et al. [70], Cambon et

al. [15], Yeung & Zhou [113], Morinishi et al. [74]), and this suppression corresponds

to a reduction of the dissipation rate (Cambon et al. [15], Morinishi et al. [74],

Domaradzki & Yang [33, 112]). Varying Ω, figure 2.3 shows the time-evolution of
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Figure 2.3: Evolutions of kinetic energy of flows under different rotation rates

[rad/s]. Started from the same initial state - isotropic turbulence with Reλ = 85

(see section 6.1.1). For the decaying rotating case with Ω = 20 [rad/s], initially

Roω3 = 0.17.

kinetic energy in decaying turbulent flows subject to rotation. Note that we have

normalized time using initial eddy turn-over time (K/ε) for decaying turbulence.

Starting from a high initial Rossby number, Roω3 = 3.4 (case with Ω = 1 [rad/s])),

the inhibition effect is small and the kinetic energy decay is almost the same as for

the non-rotating case. As initial Roω3 decreases to 0.34 (case with Ω = 10 [rad/s]),

the effect becomes stronger and the kinetic energy decays slower. If initial Roω3 =

0.34 (Ω > 10 [rad/s]) or less, there is little difference in the kinetic energy decay.

Domaradzki & Yang [33, 112] presented findings consistent with these results.
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Figure 2.4: Kinetic energy spectrum of statistically steady state of rotating

turbulent case B5.

Spectral property

In studies of high-Reynolds number rotating turbulence, it has been observed

that the inertial range energy spectrum is steeper than the Kolmogorov spectrum

E(k) ∝ k−5/3 for isotropic turbulence; spectral exponent values between −2 and −3

have been reported in several studies (Zhou [117], Yeung & Zhou [113], Baroud et al.

[5], Smith et al. [97, 96]). Recently, Bellet et al. [9] have shown that using a wave

turbulence statistical model derived from a generalized Eddy Damped Quasi-Normal

Markovian (EDQNM) theory, a k−3 spectrum can be derived in the asymptotic limit

of a quasi-infinite Reynolds number and a quasi-zero Rossby number. Figure 5.4

shows that, with forcing at small scales, kinetic energy transfers from small to large

scales, and the scaling of the large scale spectrum of rotating turbulence is in a steeper
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energy spectrum E(k) ≈ E(kh, k3 = 0) ∝ k−3
h , kh =

√
k2

1 + k2
2 (Smith & Lee [96]).

It also shows the collapse of the 2D and 3D spectra at large scales, indicating a two-

dimensionalization of the velocity field. This case will be described in detail in section

5.1.

Figure 2.5: Cyclonic two-dimensional coherent structures appearing in rotating

turbulence as indicated by iso-surfaces of vorticity, planar contours of kinetic energy

and velocity vectors: (a) statistically steady state (at time = 3.68) of small scale

forced rotating case B5. (b) statistically steady state (at time = 3.88) of large scale

forced rotating case C3 (see section 5.1).

Spatial structure and dimensionality

It has been noted that rotating turbulence with a moderate Rossby number

below an O(1) critical value accompanies asymmetry in favor of large scale cyclonic

vortical columns (Smith et al. [97, 96]). This cyclone/anti-cyclone asymmetry is
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widely observable in atmospheric science. Figure 1.2(a) shows that the direction of

rotation of large scale wind flow (e.g., hurricanes & typhoons) is counterclockwise

in the northern hemispheres (clockwise in the south). It is interesting to note that

small scale rotating turbulent flows in the atmosphere, in which the direct influence

of planetary Coriolis effect is inconsequential, are usually triggered by large scale

cyclonical storms, and approximately more than 90% of tornadoes rotate in a cyclonic

direction. Figure 2.5 shows that rotating turbulence captures this asymmetry, and

a quasi two-dimensional flow - in other words, reduced variations along the rotation

axis (Cambon et al. [16, 15], Smith & Lee [96]).

These features are related to each other. However, the Taylor-Proudman the-

orem 1 says nothing about the kinetic energy level in the velocity component par-

allel to the rotation axis as compared to the kinetic energy level in the velocity

component perpendicular to the rotation axis. Thus, the theorem does not predict

the observed tendency toward two-dimensional and two-component flow, with much

lower levels of kinetic energy in the parallel velocity component (u3 ≪ u1, u3 ≪ u2,

Cambon et al. [15], Smith & Waleffe [97]). A recent study has explored the as-

sertion that resonant triads (ωs(~k) + ωs(~p) + ωs(~q) = 0) and near-resonant triads

(
[
ωs(~k) + ωs(~p) + ωs(~q)

]
/(2Ω) = O(Ro)) are responsible for increased kinetic en-

ergy transfer to large scales resulting in steeper large scale kinetic energy spectra

E(k) ≈ E(kh, k3 = 0) ∝ k−3
h , as well as strong asymmetry in favor of cyclones (Smith

& Lee [96]).

1If Ro ≪ 1, the Taylor-Proudman theorem concludes that, (
−→
Ω · ∇)~u = 0. Assuming Ω1 = 0,

Ω2 = 0, and Ω3 = Ω, we have ∂~u/∂z = 0.
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Length scale properties of rotating turbulence can be considered as a conse-

quence of its spatial structure and dimensionality. In previous studies, integral length

scales were used to investigate nonlinear interactions modified by rotation (Cambon

et al. [16, 15]). They are defined as

Lk
ij =

∫ ∞

0

< ui(~x)uj(~x + r~nk) >

< ui(~x)uj(~x) >
dr , (2.51)

where ~nk is the unit vector along the direction axis xk, and < · > represents the

arithmetic mean.
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Figure 2.6: Evolutions of integral length scale, in isotropic turbulent case A (see

section 5.1). Statistically, Li
ii = 2Lk

jj, (j 6= k) is illustrated.

For isotropic turbulence, as shown in figure 2.6, we can statistically obtain

Li
ii = Lj

jj , Lj
ii = Lm

ll , Li
ii = 2Lm

ll , (i 6= j , l 6= m , no summation) . (2.52)

Figure 2.7 shows that, for rotating turbulence, the two-dimensional process makes it
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Figure 2.7: Evolutions of integral length scale, in small scale forced rotating

turbulent case B5.

possible to obtain inequalities of integral length scales in terms of

L3
11 > L2

11 ; L3
11 >

1

2
L1

11 (even L3
11 > L1

11 for some cases) (2.53)

L3
22 > L1

22 ; L3
22 >

1

2
L2

22 (even L3
22 > L2

22 for some cases) (2.54)

L3
33 > 2L1

33 ; L3
33 > 2L2

33 . (2.55)

Also, it is observed that

L1
11 > L3

33; L2
22 > L3

33 . (2.56)

These findings are consistent with the results of previous studies (Cambon et al.

[16, 15]).

In LES modeling, however, we focus on Taylor micro-scales because it is ex-

pected that these scales are affected more by the SGS model performance. Introduced

in 1935, Taylor micro-scales come from correlation concepts and are fundamental to

the description of the length scales of turbulence, even if the flow is anisotropic (Taylor
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[105]). Taylor micro-scales are expressed as

λk
ij =

√
2 < ui >< uj > / (〈∂ui/∂xk〉 〈∂uj/∂xk〉) . (2.57)

There are two sets of Taylor micro-scales. Longitudinal micro-scales are defined as

λf,i = λi
ii (no summation), and transverse micro-scales are defined as λg,ik = λk

ii (no

summation). As an example, λg,12 describes how quickly the x-component velocity

changes with a change of distance in the y-direction.
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Figure 2.8: Evolutions of Taylor micro-scale, in isotropic turbulent case A.

Statistically, λf,i/λg,jk =
√

2, (j 6= k) is illustrated.

Isotropic turbulence has identical longitudinal and transverse micro-scales, and

it can be obtained analytically that

λf,i/λg,jk =
√

2, (j 6= k) . (2.58)

Figure 2.8 shows the length scale evolution in forced isotropic turbulent case A.

Hao
Callout
correction: should be 
sqrt(2<u_i * u_j>/<du_i/dx_k * du_j/dx_k>)
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Figure 2.9: Evolutions of Taylor micro-scale, in small scale forced rotating turbulent

case B5.

Figure 2.9 shows that, for rotating turbulence, the two-dimensionalization pro-

cess makes that for a same velocity component, the Taylor micro-scales in the z-

direction larger than the Taylor micro-scales in other directions, in terms of

λg,13 > λg,12 ; λg,13 >
1√
2
λf,1 (even λg,13 > λf,1 for some cases) (2.59)

λg,23 > λg,21 ; λg,23 >
1√
2
λf,2 (even λg,23 > λf,2 for some cases) (2.60)

λf,3 >
√

2λg,31 ; λf,3 >
√

2λg,32 . (2.61)
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However, for different velocity components, as shown in figure 2.9(d), the longi-

tudinal micro-scale in the z-direction of a typical rotating turbulence is smaller than

the scales in other directions

λf,1 > λf,3; λf,2 > λf,3 . (2.62)

These relations are true for all cases of rotating turbulence in this study, and in section

5.3.2, we will use these relations to explain the effect of anisotropy on LES modeling.

2.4 LES of rotating turbulence

LES enables simulation of high-Reynolds number turbulent flows, and provides

more details of flow structure than RANS. Very high Reynolds numbers (& 1011, Fig.

1.2(a)) generally accompany most geophysical flows, in which the rotational effects

have significant implications due to their small Rossby numbers. Thus, Deardorff [31]

introduced the KEM, and applied it to study 3D atmospheric turbulence in 1973. He

obtained improved results concerning the flow motions and the heat flux near and

above the top of a convective planetary boundary layer. That is the earliest example

of the LES of rotating turbulence. After the DynSM was developed in 1995, Piomelli

& Liu [82] applied it to a channel flow involving rotation. They identified large scale

longitudinal vortices, and these findings were consistent with experimental observa-

tions and DNS results. Considering some fundamental drawbacks of traditional SGS

models, Domaradzki et al. [32, 33, 112] introduced their Truncated Navier-Stokes

(TNS) equation approach for estimating subgrid scales. Because energy spectrum is

used to determine viscosities, the TNS approach is not practical for engineering ap-

plications. However, using the TNS, Yang & Domaradzki [112] studied the behaviors
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of rotating turbulence with very high Reynolds numbers (∼ 1015). Their results were

in good agreement with experimental observations.

Using SGS models to simulate rotating turbulence, however, involves many chal-

lenges and difficulties. It has been shown that initially isotropic turbulence subjected

to the action of the Coriolis force decays slower in time than its non-rotating coun-

terpart for which the rotational effects are absent (Fig. 2.3). Also, at high Reynolds

numbers, the inertial range energy spectrum in rotating cases is steeper than the

Kolmogorov k−5/3 fall off for isotropic turbulence (Fig. 5.4). This behavior presents

a significant challenge for traditional SGS models, which are usually optimized for

isotropic cases, and then have to be modified to account for rotation. For instance,

the SM using a constant Cs ∼ 0.18 is appropriate for isotropic turbulence, but signif-

icantly overestimates kinetic energy decay rates for rotating turbulence. The DynSM

offers an improvement over the SM because the Smagorinsky constant becomes a

variable and its mean is usually smaller. However, even the DynSM overestimates

the energy decay at high rotation rates (Horiuti [47]). Second, the strain rate closure

forces kinetic energy to flow only from resolved to subgrid scales. This closure does

not fulfil the expectation that SGS models may also facilitate “backscatter,” espe-

cially for anisotropic turbulence. In addition, traditional SGS models assume that

the modeled small scale turbulence is nearly isotropic, but this is not true for rotat-

ing turbulence. As mentioned above, different micro-length scales occur in different

directions. This property may influence LES modeling (Lu et al. [66]).

A more fundamental problem is that the modeled stress is required to have the

same transformation properties between reference frames as the actual SGS stress.

The first invariant property of SGS models is Galilean invariance, which has been
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studied over 20 years (Speziale [102]). The second consideration is the transformation

properties of SGS models in a non-inertial frame of reference undergoing rotation

(Speziale [103], Shimomura [93], Kobayashi et al. [54], Horiuti [48]). As far as

rotational transformation properties are concerned, MFI-consistent models are more

attractive because they satisfy the transformation constraints. We note that most

traditional models, such as the SM, the DynSM, the KEM, the SSM, the MixSSM

and the DSM, are not consistent with this constraint. Studies have proven that the

consistency of the GM is true (Speziale [103], Shimomura [93], Kobayashi et al. [54],

Horiuti [48]). Note that the TNS approach is also MFI-consistent because it has no

explicit modeling expression of SGS stress. Chapter 3 treats these topics in greater

detail because we take the invariant properties of SGS models as a basic assumption

to develop new models for rotating turbulence.
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Chapter 3

Building new models

Most of the models discussed in the last chapter are based on the assumption

of small scale isotropy. For instance, the SSM uses a single coefficient CL to set

the magnitudes of all six modeled stress components (τij). For rotating turbulence,

however, it is not clear if isotropy is achieved even at the smallest scales of motion, and

different Taylor micro-scales have been observed in different directions (see section

2.3.2). Further, we study LES modeling from a fundamental aspect, the invariance

of SGS models.

3.1 The invariance of SGS models

With a view toward developing models that are more suitable for the LES

modeling of rotating turbulence, it is helpful to consider the invariance properties of

the full equations and of models.

Galilean invariance of LES modeling has been studied for over 20 years (Speziale

[102]). The Navier-Stokes equations as well as their filtered forms (2.23) are invariant

under the Galilean group of transformations, x∗ = x+Vt+B. The SGS stress tensor

is also invariant, τij = τ ∗
ij , under the Galilean transformation. As a cautionary remark,

SGS models are required to exhibit the same (invariant) feature as the SGS stress
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tensor. Fortunately, except for the original scale similarity model (τij ≈ uiuj − uiuj)

of Bardina [2], all other recent models satisfy Galilean invariance.

Second, consistency with Material Frame Indifference (MFI) has been consid-

ered as one constraint of SGS models under the Euclidean group of transformations,

x∗ = Q(t) · x (Speziale [103], Shimomura [93], Kobayashi & Shimomura [54], Horiuti

[48]). Here, we briefly review this issue. We denote a proper orthogonal rotation

matrix (Q · QT = I) as Qij , and x∗
i (u∗

i ) is the position (velocity) vector in a ro-

tating frame. The principle of MFI (QiatabQ
T
bj = t∗ij, where tij are components of

an arbitrary tensor) has been applied as a principle for constitutive relations in the

Navier-Stokes equations (Segel [92]). However, the SGS stress tensor τij in an inertial

frame is connected to the SGS stress tensor τ ∗
ij = u∗

i u
∗
j − u∗

i u∗
j in a rotating frame

according to a frame different expression

QiaτabQ
T
bj = τ ∗

ij + Z∗
ij , (3.1)

where Z∗
ij is given by

Z∗
ij = ǫiabΩ

∗
a

(
x∗

bu
∗
j − x∗

b u∗
j

)
+ ǫjabΩ

∗
a

(
x∗

bu
∗
i − x∗

b u∗
i

)

+ǫiabǫjcdΩ
∗
aΩ

∗
c

(
x∗

bx
∗
d − x∗

b x∗
d

)
, (3.2)

and where Ω∗
i is the angular velocity of the rotating frame. For the Gaussian filter,

the quantity Z∗
ij is analytically expanded to be

Z∗
ij =

∆2

12

(
ǫiabΩ

∗
a

∂u∗
j

∂x∗
b

+ ǫjabΩ
∗
a

∂u∗
i

∂x∗
b

+ Ω∗
aΩ

∗
aδij − Ω∗

i Ω
∗
j

)
+ O(∆4) . (3.3)

This Taylor expansion shows that the rotational effects on τij and LES models decay

as (∆2). Furthermore, it can be shown that the tensor Z∗
ij is divergence free with
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∂Z∗
ia/∂x∗

a = 0, leading to frame indifference of the vector ∂τ ∗
ij/∂x∗

j

Qia
∂τab

∂xb
=

∂τ ∗
ia

∂x∗
a

. (3.4)

Since ∂τij/∂xj appears in the LES momentum equation (2.23), and not the

tensor τij itself, one may argue that SGS models need only satisfy the MFI-consistency

on the vector level (3.4), rather than on both the vector level (3.4) and the tensor

level (3.1). However, the stress tensor τij itself is important for the SGS kinetic

energy equation, and thus we adopt the point of view that as a rigorous principle,

a modeled stress tensor should satisfy, Qiaτ
model
ab QT

bj = τ ∗,model
ij + Z∗

ij + (Z∗,model
ij −

Z∗
ij) with Z∗,model

ij − Z∗
ij = 0, just as the actual stress tensor does in equation (3.1)

(Horiuti [47, 48], Shimomura [93], Kobayashi & Shimomura [54]). Note that the ratio

of τij (and τ ∗
ij) to Z∗

ij can also be characterized by a Rossby number. For rotating

turbulence at small micro-scale Rossby numbers, we do not apply the principle of

MFI to the SGS stress (Horiuti [48]), but consider rotational effects for small scale

turbulence. Otherwise, SGS modeling error caused by rotational frame transfers,

Z∗,model
ij − Z∗

ij, will be added into a fluid dynamic system for different rotational

frames (inertial frame: Ω = 0).

Speziale [103] has stated that without concerning the effects of rotation, eddy-

viscosity models have difficulty predicting energy transfers between resolved and sub-

grid scales when Ω → ∞ (Ro → 0). As the rotation rate of the framing increases,

the GM (2.32) has the correct damped-dissipation behavior for rotating turbulence

(Speziale [103]). Requiring (3.1), some traditional SGS models, such as the SM and

the SSM, are MFI-inconsistent. It has been stated that the GM and the LM
ij + CM

ij
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are MFI-consistent (Speziale [101], Shimomura [93], sometimes referred to as “form

invariant”).

3.2 MFI-consistent dynamic structure models

Even thought the original DSM has been shown to have excellent agreement

with the actual SGS stresses for isotropic turbulence (Pomraning & Rutland [86],

Chumakov & Rutland [24]), this model is not MFI-consistent. Thus, for rotating

turbulence, we developed two models in the DSM family that are MFI-consistent.

Recall that the stresses corresponding to the gradient model (2.32) are MFI-

consistent (Kobayashi & Shimomura [54]). Thus, we propose the Gradient type Con-

sistent Dynamic Structure Model (GCDSM) for rotating flows

τij ≈
(

Gij

Gmm

)
2ksgs , where Gij =

∂ui

∂xk

∂uj

∂xk

. (3.5)

A second model can be formed using the fact that LM
ij + CM

ij is MFI-consistent

(Shimomura [93] and Kobayashi et al. [54]). We propose the Similarity type Consis-

tent Dynamic Structure Model (SCDSM) with the form

τij ≈
(

Υij

Υmm

)
2ksgs , (3.6)

where the Leonard term plus the cross term is modeled as Υij,

Υij = CLLM
ij + CC

[(
uiuj − uiuj

)
+
(
uiuj − uiuj

)
− 2

(
uiuj − uiuj

)]
. (3.7)

When the cross term CM
ij is approximated in the form of the generalized scale sim-

ilarity model (Horiuti [46]), CC and CL are both O(1) dimensionless coefficients.

Appendix C gives the derivation of the modeling expression of CM
ij . In this study, CC

is set to 1.5, and CL is set to 1.
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3.3 Mixed version of MFI-consistent DSM

In simulations of rotating turbulence, we introduce a linear combination of new

models and a hyper-viscosity term (Basdevant & Sadourny [8], Ferziger [35])

MixGCDSM : τij ≈
(

Gij

Gmm

)
2ksgs + ν4∇2Sij (3.8)

MixSCDSM : τij ≈
(

Υij

Υmm

)
2ksgs + ν4∇2Sij (3.9)

where hyper-viscosity ν4 can be modeled as ν4 = C ′
k∆

3
√

ksgs, which is O(∆4), and

can be treated as a model of the second term of the Taylor expansion of the SGS stress

(2.29). The model coefficient C ′
k can be determined by a modification of the dynamic

procedure illustrated in section 2.2.2.4. For simplicity, we set a small empirical value

for this coefficient, C ′
k = 0.008.

We adopt the hyper-viscosity term for two major reasons: (i) at the a-posteriori

test level, we find that there exists a need of including an eddy-viscosity term, be-

cause for high-Reynolds number turbulent flows, the GCDSM and the SCDSM do

not dissipate enough kinetic energy at small scales and typically are unstable; (ii)

traditional eddy-viscosity (Bardina et al. [3], Zang et al. [116], Vreman et al. [106])

is too dissipative at large scales, and does not facilitate capturing some anisotropic

features of rotating turbulence, such as the quasi two-dimensional flow at large scales,

and reverse energy transfer to large scales. It is important to note that the magnitude

of the structure term is significantly higher than that of the hyper-viscosity term, and

the hyper-viscosity term does not degrade the a-priori results of the original unmixed

version.
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Chapter 4

Correlation and regression

A common method of evaluating SGS models is through a-priori tests in which

models are compared to filtered DNS results. This serves as a standard testing tech-

nique for SGS models that is used as an initial evaluation and comparison of models.

Later, tests of the most promising models will be made using LES codes in a-posteriori

tests.
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Figure 4.1: Contour plots of SGS stress τ11 (left) and scale similarity modeled stress

τSSM
11 (right) at z = 0 layer in isotropic turbulent case A. Gaussian filtering with

kc = 32 is used for the SSM. τ11 and τSSM
11 have similar structures but different

contour levels whose ratio is given by regression coefficient: β(τ11, τ
SSM
11 ) = 0.52.
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A qualitative a-priori evaluation can be made by comparing representative con-

tour plots such as the ones shown in figure 4.1. Here τ11 from the SSM and a filtered

DNS simulation of isotropic flow are compared. The model can duplicate much of

the general structure of τ11 but the magnitudes of the contour levels are significantly

different. This evaluation helps to reveal which models duplicate more details of SGS

stresses and which models can capture average behavior but may miss details.

More quantitative a-priori evaluations can be made using Probability Density

Functions (PDF) of relative errors such as

E =
τmodel
ij − τij

τij
, (4.1)

shown in figure 4.2 (Chumakov & Rutland [23]), and by scatter plots of modeled

terms verses filtered DNS terms as shown in figure 4.3. In many situations, the main

character of the scatter plots can be described by a linear regression. The linear

regression equation, b = β · a+α, represents the relationship between variables a and

b. Generally, α = 0 in LES modeling. The slope of the linear correlation line, β,

and the scatter around this correlation line, ρ, provide convenient measures of SGS

models in a-priori tests. Note that β is related to the ratio of the contour levels in

figure 4.1, to the mean of PDF (E) in figure 4.2 and to the slope of the linear curve

fit in figure 4.3. Also, ρ is related to the variance of PDF (E) in figure 4.2 and to the

scatter around the linear line in figure 4.3.

Conventionally, β is called the regression coefficient and ρ is called the correla-

tion coefficient. The regression coefficient is evaluated by a least squares fit leading

to

β(a, b) =
< ab > − < a >< b >

< a2 > − < a >2
, (4.2)
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with optimal value β = 1. The correlation coefficient is evaluated by

ρ(a, b) =
< ab > − < a >< b >√

(< a2 > − < a >2)(< b2 > − < b >2)
. (4.3)

The range of ρ is -1 to 1 with negative values of ρ rarely occurring in LES a-priori

testing and values close to one indicating a strong correlation.

The two coefficients β and ρ are global factors rather than local factors. A

decrease from the value ρ = 1 in the correlation indicates a loss of ability to capture

the correct resolved flow structure, and a departure from the value β = 1 in the

regression indicates a loss of ability to capture the correct magnitude level of resolved

flow quantities. Menon et al. [72] showed that even when there was similarity between

the resolved structures, the peak values predicted by the SSM could be quite different

from the actual values (about 25% lower for their cases). The regression coefficient

can be used to describe this difference quantitatively.
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The regression and correlation coefficients are the primary tools used in the

current a-priori tests. Several different aspects of the SGS models are tested. Tests

of individual tensor components as the terms a and b in equations (4.3) and (4.2)

are indicated by dual subscripts: ρij = ρ(τij , τ
model
ij ) and βij = β(τij, τ

model
ij ). Tests of

the components of the divergence of τij , which appears in the momentum equation,

are indicated by single subscripts: ρi = ρ(
∂τij

∂xj
,

∂τmodel
ij

∂xj
) and βi = β(

∂τij

∂xj
,

∂τmodel
ij

∂xj
). Tests

of the kinetic energy production term, P = −τij
∂ui

∂xj
, are indicated by no subscripts:

ρ(P ) = ρ(−τij
∂ui

∂xj
,−τmodel

ij
∂ui

∂xj
) and β(P ) = β(−τij

∂ui

∂xj
,−τmodel

ij
∂ui

∂xj
).
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Chapter 5

A-priori test

Once fully developed turbulent flows are calculated by DNS or measured ex-

perimentally, the actual τij(~x, t) and the modeled τmodel
ij (~x, t) can be generated, and

a-priori tests of SGS models can be performed. Such a comparison requires data at

high spatial resolution that are sufficient to resolve the SGS range. In 1979, Clark

et al. [25] performed the earliest example of such studies accomplished by numerical

calculation. Besides numerical simulations, an alternative is the use of experimental

data. This approach enables the study of high-Reynolds number flows, but is limited

by experimental techniques. For instance, Liu et al. [64, 65] used planar PIV to

measure four tensor elements by means of a spatial filtering in two directions.

In this study, numerically simulated isotropic turbulence and numerically sim-

ulated rotating turbulence cases were used with the goal of improving performance

through the new models, GCDSM (3.5) and SCDSM (3.6).

5.1 Case description

Here we introduce the main cases: isotropic turbulence forced at large scales

(case A); rotating turbulence forced at small scales (B series); rotating turbulence

forced at large scales (C series). In all cases, the domain is a periodic cube of volume
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(2π)3 and flows are resolved using 1283 Fourier modes. All flows were initialized with

low energy isotropic noise, and the force was turned on at time zero.
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Figure 5.1: Kinetic energy spectrum of

statistical steady state of isotropic

turbulent case A.
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Figure 5.2: Evolutions of kinetic energy

and micro Reynolds number of isotropic

turbulent case A.

Case A is an isotropic turbulence forced at large scales (1.9 < kf < 4.5) using

Overholt-Pope’s forcing scheme. A kinematic viscosity of 0.0013 leads to a statistical

steady state with Taylor micro-scale Reynolds number Reλ = 100. The spectrum

of the final state is shown in figure 5.1. The wave number is normalized by the

Kolmogorov length scale, η = (ν3/ε)1/4 = 0.01, and for convenience, a −5
3

power

law is shown as a dotted line. Figure 5.2 shows the evolutions of the kinetic energy

and the micro-scale Reynolds number, and indicates that a statistical steady state

has been reached. As discussed above, figure 2.8 indicates the isotropy of the flow

characterized by the micro-length-scale feature λf,i/λg,jk =
√

2, (j 6= k) (Pope [87]).

For rotating turbulence we performed a series of simulations B and C, with case

names, parameters and final Rossby numbers given in table 5.1. As mentioned, a
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Gaussian white-noise force is used for both series B and C, with the peak wave number

of the force as the main difference between the two sets of runs: series B has small scale
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Table 5.1: Description of forced rotating runs

Case kf Ω [rad/s] viscosity RoG Roω3

B1 11 10 hyper only 0.25 0.38

B2 11 50 hyper only 0.049 0.094

B3 21 10 hyper only 0.38 0.38

B4 21 50 hyper only 0.076 0.082

B5 21 50 hyper+hypo 0.076 0.086

C1 2.5 2 hyper+hypo 0.46 0.50

C2 2.5 4 hyper+hypo 0.23 0.31

C3 2.5 6 hyper+hypo 0.15 0.35

C4 2.5 8 hyper+hypo 0.12 0.24

D 2.5 8 real-viscosity 0.12 0.13

forcing with peak wave number kf = 11 or kf = 21, and series C has large scale forcing

with peak wave number kf = 2.5. Runs B1-B4 are time developing without large

scale damping, and are terminated before energy accumulates in box-size vortices

corresponding to population of modes with k = 1. Note that energy is growing in

those runs and only scales smaller than the forcing scale are in a statistically steady

state. Case B5 and C series run have hypo-viscosity to remove box-size vortices, and

would eventually reach a statistically steady state at all scales. For all B and C series

runs, the rotation rate was carefully selected to achieve moderately small values of

the Rossby numbers RoG and Roω3 (see section 2.3.1).
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Figures 5.4 and 5.5 show spectra from case B5 and case C3. Both figures show

that energy in the large scales is predominantly in two-dimensional modes, while

energy at small scales is increasingly three-dimensional. The physical space pictures

corresponding to the spectra of figures 5.4 and 5.5 are shown in figure 2.5, with quasi

two-dimensional cyclonic vortical columns in both cases. Similar coherent structures

and a-priori test results were obtained in all cases. We present a-priori test results

for case B5 to illustrate the model performance, and results for case C3 are presented

in section 5.5. In addition, we performed a 2563 real-viscosity rotating case D to

confirm our conclusions. Case D will be described in detail in section 5.5.2.

5.2 Eddy viscosity models

Eddy viscosity models are low-correlation models. It has been well established

that the strain rate tensor has a low correlation level (ρ < 0.4) with stress components

(Clark et al. [25], Bardina et al. [2], Liu et al. [64], and Menon et al. [72]). Similar

results are obtained in our DNS cases and summarized below.

Figures 5.6 and 5.7 show correlation coefficients for SGS models in isotropic

turbulence and rotating turbulence as a function of the LES filtering cut-off wave

number, since there is no clear definition of the Kolmogorov scale for rotating flow.

Results for the SSM are provided as a reference for comparison because it is known

to be a relatively high-correlation model. All components of the SGS stress tensor

and its divergence were examined but only representative components are presented.

For isotropic turbulence, the SM gives a low correlation level (∼ 0.2) for stress

components (τij), a slightly better correlation (∼ 0.35) for the vector components

of the divergence (∂τij/∂xj), and a better correlation (0.5 ∼ 0.8) for the production
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term. These results are consistent with the findings of Clark et al. [25], Liu et al.

[64], Menon et al. [72] and others. For rotating turbulence, the SM gives very low

correlation coefficients (0 ∼ 0.03) for stress components, higher correlations (0.02 ∼

0.2) for vector components of the divergence, and very low correlations (0 ∼ 0.03) for

the production term.
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For isotropic turbulence, the KEM gives very good correlation coefficients (∼

0.8) for stress components (τij , i=j), but a low correlation level (∼ 0.3) on cross terms

(τij , i6=j). These outcomes are reasonable because the magnitude of the diagonal terms

is dominated by the SGS kinetic energy while the cross terms are determined by the

strain rate tensor. The correlation level of the components of the divergence is between

0.3 and 0.5, and the correlation level of the energy production term is between 0.5

and 0.8. These results are consistent with the findings of Menon et al. [72]. For

rotating turbulence, the KEM gives a low correlation coefficient (ρ < 0.2) for any

stress component involving the rotation direction (τ3j , j=1,2,3), for all components of

the divergence, and for the energy production term. Significantly, it gives a negative

ρ33 for very large filter sizes.

5.3 MFI-consistent models

Models that are MFI-consistent with the actual SGS stress are expected to do

much better in rotating systems. These models have high correlation and regression

coefficients and improved ability to capture the anisotropy of rotating turbulent flows.

5.3.1 Correlation of SGS models

Models based on the scale-similarity procedure or a Taylor expansion usually

give high correlation coefficients in a-priori tests. As mentioned in section 3.2, this

study develops two new models based on these two procedures. As a consequence,

these new models are able to capture the resolved flow structure much better than

eddy viscosity models.
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Focusing on the SCDSM results, figure 5.8 shows the correlation coefficient

ρi in rotating turbulence case B5. Even though the correlation of the divergence

component in the z-direction decreases more rapidly than the other components, all

three correlations for the vector components are greater than 0.6 over a wide range

of filter sizes. Similar results are obtained for tensor correlation coefficients; only ρ33

dip below 0.6 when kc < 10 in some rotating turbulent cases.

5.3.2 Influence of anisotropy

Section 3.2 showed that SSM is inconsistent with MFI at the stress tensor level.

Here, we use a-priori test results to illustrate its failure to capture anisotropy. We

chose the SSM as an example because it is a widely used zero-equation SGS stress

model. Results of the SCDSM are used to show that MFI-consistent models are better

able to capture anisotropy.

According to the definition of the SSM (2.33), all six modeled stress compo-

nents use the same similarity coefficient, CL. This coefficient has no influence on
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correlation but does change regression coefficients. The coefficient CL = 1 is used, so

the regressions are equal to one for very small filter sizes.

Figure 5.9 shows the correlation and regression coefficients of stress components

in isotropic case A and in rotating turbulent case B5. Regardless of the flow type,

the correlation and the regression coefficients decrease when the filter size increases
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(kc decreases). These results show that the SSM becomes quite poor as the gird is

coarsened.

As shown in figures 5.9(a) and (b), for isotropic turbulence, because of isotropy,

the six correlation coefficients of stress components decrease similarly, and the six

regression coefficients of stress components decrease similarly.
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Figure 5.10: Regression coefficient: (a) isotropic case A; (b) rotating case B5.

For rotating turbulence, the SSM correlation and regression coefficients that

correspond to the rotating direction components decrease much more rapidly with

filter size than the other coefficients, as shown in figures 5.9(c) and (d). This difference

between the isotropic turbulence and the anisotropic turbulence lies in the length

scales. Section 2.3.2 has shown that rotating turbulence does not have an identical

scale in all directions. Generally, λf,3 is smaller than λf,1 and λf,2. When isotropic

filters are used, the normalized length scale ∆/λf in the z direction is larger, and the

turbulence details in the z-direction are more highly filtered. In a sense, a relatively

coarser grid has been employed in the z-direction. As a consequence, the correlation
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and the regression coefficients associated with the z-direction components are smaller

than for the other directions.

In contrast, the MFI-consistent SCDSM shows much better results than the

SSM. Figure 5.10 shows the regression coefficients of vector components in case A

and case B5 for the two models. For isotropic turbulence, the SCDSM gives nearly

perfect regressions in all directions for all filter sizes, while the SSM shows very

poor regression coefficients. For rotating turbulence, anisotropy effects make the

regressions in the z-direction decrease more rapidly. However, the SCDSM regression

coefficients remain greater than 0.8 in all directions for smaller filter sizes (kc > 20).

In contrast the SSM only gives β3 ≈ 0.35 when kc = 20.

5.3.3 Regression of SGS models

For isotropic turbulence, figures 5.9(b) and 5.10(a) show that the regression

coefficient of the SSM decreases rapidly to values less than 0.35 when kc decreases

to 20. To improve the regression coefficient, at least two methods have been used.

One method uses SGS kinetic energy to determine the similarity coefficient in zero-

equation scale similarity models (Cook [26]). This approach, however, has to use ki-

netic energy spectra in Fourier space, which may be not applicable to most engineering

applications. In the method adopted herein, called the Dynamic Structure approach,

one-equation models use SGS kinetic energy to predict the magnitude of the modeled

SGS stresses, and use normalized tensor terms to determine the SGS stress structure

(Pomraning & Rutland [85, 86]). For example in SCDSM, τij ≈ 2ksgs

(
ΥM

ij

ΥM
mm

)
. The

SCDSM gives very high regression coefficients, β > 0.9, over all filter sizes in all

directions (figure 5.10(a)). The other dynamic structure models, GCDSM and DSM,
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have similar results. This suggests that such models may be applicable for LES of

high Reynolds number isotropic turbulence using relatively coarse grids.

For rotating turbulence, as shown in the previous section (figures 5.9(d) and

5.10(b)), the correlation and the regression coefficients in the z-direction decrease

much more rapidly with filter size than the other coefficients. Hence, to show the

benefits of the new models, we compare the stress in the z direction (τ33) and the

vector component in the z-direction (∂τ3j/∂xj).
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Figure 5.11: Regression coefficient for rotating case B5: (a) β33 and (b) β3.

Figure 5.11 shows z-direction regression coefficients for the new models. When

compared to the SSM, three dynamic structure models have significantly higher re-

gression coefficients in isotropic turbulence and noticeably better results in rotating

turbulence. This is primarily due to the use of SGS kinetic energy to determine the

magnitude of the SGS stresses.

In rotating turbulence, the two MFI-consistent models (GCDSM and SCDSM)

show better results than the basic dynamic structure model (DSM). Maintaining
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material frame indifference in the model, either inherently or by construction, helps

to diminish the problems of anisotropy that occur in rotating systems. Figure 5.11

shows that the GCDSM gives some of the best results. For rotating turbulence, the

GCDSM regression coefficient remains near one for all filter sizes. It gives β > 0.8

when kc > 13 for τ33, β ≈ 1 for other stress terms, and nearly unit regression for

vector components even when the grid is very coarse. Note that at small filter sizes,

the GCDSM does not approach the actual SGS stresses because the model is based

on the first term in a Taylor series. This shortcoming is probably not significant in

applications where coarser than DNS grids are used, especially given the excellent

results of this model.

All of the results presented here use the Gaussian filter in a discrete manner in

physical space. We have explored the cut-off, the top-hat and the triangle filter (Pope

[87], Piomelli et al. [83], and Pomraning & Rutland [85]). The results for these filters

are essentially the same as for the Gaussian filter. The primary difference was found

with the cut-off filter which introduces additional physical space oscillations and can

result in lower correlation coefficients. This is consistent with the results of Liu et al.

[64].

5.4 Energy production at subgrid scales

Kinetic energy transfer between resolved and subgrid scales occurs through the

production term (also called energy flux) that appears in the SGS kinetic energy

equation. The term is defined as

P = −τijSij = −τij
∂ui

∂xj
, (5.1)
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and is useful for comparing various SGS stress models as shown in figures 5.12, 5.13

and 5.14.

For isotropic case A, figure 5.12(a) shows that two eddy viscosity models (SM

and KEM) give correlations values of about 0.75 over a wide filter size range. This

is a reasonably good correlation and illustrates why these models can predict global

dissipation fairly accurately. For rotating case B5, however, the eddy viscosity models

give correlations values of less than 0.05 (figure 5.12(b)). This indicates that in

rotating systems these models will have trouble predicting even the total, global

energy dissipation. High correlation coefficients (above 0.8) can be obtained with

other models in both cases. Figure 5.12 includes correlation results of the GCDSM

and the SCDSM. Similarity type models (e.g., the SSM, the DSM and the SCDSM)

have very similar correlation results; correlation values of gradient type models (e.g.,

the GM and the GCDSM) are also in very good agreement.

Examining the regression coefficient (figure 5.13) shows that the Dynamic Struc-

ture models (e.g., the GCDSM and the SCDSM) have much better results than the

zero-equation high-correlation models (e.g., the SSM and the GM). The SSM and the

GM significantly under-estimate the magnitude of energy production at larger filter

sizes. This under-estimation of energy transfer is consistent with these models hav-

ing more problems with stability when modeling high Reynolds number turbulence

(Bardina [2, 3]).

Figure 5.14 shows the power spectra of the energy transfer term at a given filter

size for rotating case B5. The SM is re-calculated by
(

τkk

3
δij − 2νtSij

)
to perform

this comparison. Most of the models show spectra that monotonically increase from

large to small scales, similar to the DNS spectra. The SSM and the GM show slightly
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Figure 5.12: Correlation coefficients of production: (a) isotropic case A; (b) rotating

case B5.
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Figure 5.13: Regression coefficients of production: (a) isotropic case A; (b) rotating

case B5.

lower values and the Dynamic Structure models show values close to or slightly higher

than the DNS results, all consistent with figure 5.13 showing β ≈ 1. However, figure

5.14 reveals significant inaccuracies in both the SM and the KEM. The SM is too

dissipative at all scales, and the KEM spectrum has the opposite tendency from the

DNS spectrum.
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kc = 11).

5.5 A-priori tests of other rotating cases

Although the a-priori analysis was carried out on all the DNS data sets, only

case B5 was discussed above. Here, we present other examples to demonstrate the

consistency of the conclusions.

5.5.1 Tests of another 1283 hyper-viscosity rotating case

In case B5, we input energy using the Gaussian white-noise forcing scheme at

small scales (kf = 21). In case C3, we input energy using the same scheme at large

scales (kf = 2.5). The hypo- and hyper-viscosities were used in both computations

to produce a reasonable inertial range and stationary results. More importantly, case

B5 and case C3 have some differences in the underlying physical processes (figures

5.3, 5.4, 5.5, and 2.5). For example, in case B5, the reverse energy transfer from small

to large scales is the only energy source for the flow at large scales. The 3D & 2D
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spectrum plots 5.4 and 5.5 show that the flow at large scales is more two-dimensional

when forced at small scales than when forced at large scales.
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Figure 5.15: Regression coefficients for large scale forced rotating case C3: (a) β33

and (b) β3

However, case B5 and case C3 have the similar regression coefficient results

in two ways: (i) there exists an overall tendency that the regression coefficient de-

creases when the filter size increases, and also the z-direction regression coefficients

decrease more rapidly (not plotted here); (ii) as shown in figures 5.15 and 5.11, the

two MFI-consistent one-equation models (GCDSM and SCDSM) have higher regres-

sion coefficients than the others, and the GCDSM has some of the best results. We

have consistent conclusions for energy production term which are not plotted here.

5.5.2 A 2563 real-viscosity rotating case

We have performed a-priori tests of a 2563 real-viscosity rotating turbulent case

D, which reached a quasi-steady state with Reλ = 180. Figure 5.16 shows the 3D &
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2D kinetic energy spectra of this case. In order to compare with the results of the 1283

large scale forced hyper-viscosity runs (C series), we have chosen the same Gaussian

forcing peak wave number kf = 2.5, and have matched Rossby number RoG = 0.12.
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Figure 5.16: Kinetic energy spectrum of a 2563 large scale forced real-viscosity

rotating turbulent case D.

The 2563 case allows us to do correlation-regression studies up to kc = 85.

Figure 5.17 compares the regressions for 1283 hyper-viscosity rotating case C3 and

2563 real-viscosity rotating case D. There is a clear overall tendency for the regression

coefficient to decrease as the filter size increases. Figure 5.17 shows that dynamic

structure models (DSM, GCDSM and SCDSM) have an advantage over the SSM

in more accurately modeling SGS stress; the GCDSM and the SCDSM also show

promise of higher regressions than other models.
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5.6 A-priori tests using joint PDF

The structure of SGS stress, τij , is also of interest in LES modeling. Recently,

Chumakov [22] introduced two parameters, s∗ and q∗, to characterize the state of

SGS stress. If we denote the eigenvalues of SGS stress by α, β, and γ, in the order

α > β > γ, these two parameters are defined as

s∗ = −cos3θ , q∗ =
1

6π
(12φ + 8sin2φ + sin4φ) , (5.2)

with the angles θ and φ given by

cosθ =
3α̃√

6(α̃2 + β̃2 + γ̃2)1/2
, sinφ =

α + β + γ√
3(α2 + β2 + γ2)1/2

, (5.3)

where α̃ = α − τii/3, β̃ = β − τii/3, and γ̃ = γ − τii/3. s∗ describes the anisotropy of

SGS stress. If s∗ ≈ −1, SGS stress is highly anisotropic, namely, the two eigenvalues
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of τij are much smaller than the third, which corresponds to two smooth and one

strongly fluctuating velocity component. q∗ = 0 indicates τii = 0. Some advocate

using the pair (s∗, q∗) instead of just s∗ to fully characterize the state of τij , since τij

is rarely traceless.
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Figure 5.18: Assessment of SGS models using s∗ and q∗ (rotating case B5). A

Gaussian filter function with kc = 20 is used. (a) Contour plot of joint PDF of (s∗,

q∗); (b) contour plot of joint PDF of (s∗, q∗) obtained from the SCDSM; (c) contour

plot of joint PDF of (s∗, q∗) obtained from the GCDSM; (d) PDF of s∗ and p∗

computed by the SGS stress and two models: the GCDSM and the SCDSM.
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Figures 5.18(a)-5.18(c) show contour plots of joint PDF of (s∗, q∗) calculated

using actual SGS stress and using the two new models (GCDSM and SCDSM). Figure

5.18(d) shows PDF of s∗ and p∗ using actual SGS stress and using the two new

models. These plots reveal that rotating turbulence has high degree of the SGS stress

anisotropic. Also, the SCDSM, which is based on the scale-similarity assumption,

predicts a distribution of states that is closer to actual. However, the GCDSM, which

is based on a truncated Taylor series, does not produce an adequate distribution of

states. This conclusion is consistent with findings on isotropic turbulence (Chumakov

[22]).

5.7 Summary

The evaluation of model performance in this comparative study of various SGS

models is summarized in table 5.2. The models are listed with symbols to indicate if

they performed poorly, well, or very well on each diagnostic.

As mentioned in section 2.2.2.4, the viscosity term in the mixed approach does

not degrade the a-priori results. Typically the magnitude of the structure term is

significantly higher than that of the viscosity term (' 50 times when measured in

the L2-norm). Also in comparison with the scatter distribution for the structure

term (such as the similarity term shown in figure 4.3), the viscosity term is much

more isotropically distributed. As a consequence, the viscosity term gives much lower

correlation. At the a-priori level, the mixed versions derived from the SSM, the GM,

the DSM, the SCDSM and the GCDSM have delivered results identical to the original

unmixed versions.
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Table 5.2: Comparison of model performance in the LES of rotating turbulence at

the a-priori test level

Diagnostic SM KEM SSM GM DSM SCDSM GCDSM

ρij − ∗ + + + + +

βij , (i, j 6= 3) − ∗ + + + ++ ++

β3j − − − − − + ++

ρi − − + + + + +

βi, (i 6= 3) − − + + + ++ ++

β3 − − − + − + ++

ρ(P ) − − + + + + +

β(P ) − − − − + ++ ++

PDF (s∗, q∗) − − − − + + −

The symbols −, + and ++ refer to bad, good and very good results.

*Good on ρ11, ρ22, β11 and β22, but bad on cross terms, ρij,(i6=j) and βij,(i6=j) .

It is important to note that all rotating cases in the present study have the same

Taylor micro-scale features as discussed in section 2.3.2. As discussed in sections 5.3.2

and 5.3.3, a large size filtering, which can be characterized by a normalized filter size

(e.g., the ratio of filter size to micro-scale), compresses the small scale turbulence and

lowers the correlation and the regression coefficients overall. Because λf,3 is smaller

than λf,1 and λf,2, a relatively coarser filtering was employed in the z-direction. As

a result, regression coefficients decrease much more rapidly in the z-direction, espe-

cially for traditional SGS models which assume that small scale turbulence is nearly
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isotropic and do not account for rotational effects (e.g., the SSM and the DSM). MFI-

consistency is a theoretical standpoint concerning turbulent constitutive relation for

SGS stress in a non-inertial frame of reference undergoing rotation. This comparative

study shows that the new MFI-consistent models can achieve considerably improved

regression coefficient values in all directions.

In this study, DNS validation cases were performed at moderate Reynolds num-

ber for forced isotropic turbulence and moderate Rossby numbers for forced rotating

turbulence. Details of the comparison may be valid only for these cases, but some

studies are expected to be more generally applicable, such as the regression coefficient

analysis, the invariance of SGS models and the influence of anisotropy on LES model-

ing. Nevertheless, there is still a need for a-posteriori testing of rotating turbulence.
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Chapter 6

A-posteriori test

Certain risks exist if a systematic investigation of model performance in actual

LES of turbulent flows is not performed. For instance, the SSM performs better than

the SM at the a-priori level, but the SSM alone does not dissipate enough kinetic

energy at small scales and typically leads to inaccurate results (Bardina [2]). Thus,

researchers have added a viscosity term resulting in a mixed version (Bardina [2],

Zang [116], Vreman et al. [106]), which has been proven a great success for many

applications (Zang et al. [116], Vreman et al. [108], Kobayashi & Shimomura [54]).

This shows an example that a-posteriori tests can play an important role in improving

LES modeling.

Note that a-posteriori tests differ from engineering applications. A-posteriori

tests usually use simple geometries, such as 3D rectangular boxes and concern only

limited numbers of physical phenomena for a specific research purpose. There exist

many physical complexities, such as external forces, rotation effects, wall frictions,

chemical reactions, flow shearing, and multiple phases. A-posteriori tests usually

exclude complexities not relevant to a given research focus.

Rather than focus on numerical methods, we systematically investigate and

compare the characteristic behavior of a number of SGS models in an actual LES

of rotating turbulent flows. Thus, we still used the pseudo-spectral method, and
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the third order Runge-Kutta time marching scheme. We calculated the modeled

SGS stress in physical space and transferred it into Fourier space as needed. We

conducted two configurations of LES to assess SGS models. The LES results in the

first configuration were compared with the filtered DNS results. To strengthen our

understanding of the physical elements, we have concentrated on decaying turbulent

flows without considering the effects of any external forcing. The simulations in the

second configuration were performed at higher Reynolds numbers than in the first

configuration. The rotating turbulent flows were forced at both intermediate scales

and large scales. We judged the LES results according to the anisotropic level of

the rotating turbulence including the cyclone structure, the kinetic energy transfer

from small to large scales, and the quasi two-dimensional structure. The second

configuration of simulations is a more rigorous assessment, because traditional models

fail to capture these features of rotating turbulence.

Note that we used traditional parameter setups for SGS models as described

in section 2.2.2. LES equations (2.23) were solved numerically on a mesh of spacing

h = 2π/max(nx, ny, nz), where nx, ny and nz are the point numbers in the x-, y-

and z-directions. We treated ∆ = 2h for six-order accuracy (Vreman et al. [108],

Chow & Moin [21], Pope [88]). For simplicity, we use some abbreviated expressions

below: “ the large eddy simulation using the SM” is abbreviated as “the SM”, and

“the large eddy simulation using the SM at the resolution of 323” is abbreviated as

“the 323 SM”, etc.
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6.1 Decaying turbulence

First, we applied models to decaying turbulent flows, including an isotropic tur-

bulent case and two rotating turbulent cases. The initial Taylor micro-scale Reynolds

numbers were about 85. Thus, the 1283 DNS could resolve all scales, and the DNS

results could verify the accuracy of SGS models and identify their problems. We set

the Courant-Friedrichs-Lewy (CFL) numbers for decaying flows at ∼ 0.15.

6.1.1 Case description

Three cases with different setups were studied. Table 6.1 presents the initial

state letters (I and R), the rotation rates, and the Rossby numbers at the initial times

in cases E, F, and G.

State I is an isotropic turbulent state derived from case A. After case A reached

its statistically steady state (Reλ = 100), which we used in our a-priori tests, we

turned off the forcing. The isotropic turbulent flow decayed over about two eddy

turn-over times and reached state I. Figure 6.1 shows a three-dimensional kinetic

energy spectrum of state I (Reλ = 85); for convenience, a −5/3 power law is shown

as a dotted line. State R is a rotating turbulent state. We used the Gaussian forcing

to add energy at large scales (kf = 2.5) to an initial very low energy isotropic random

noise, and added rotation from the very beginning. Such problems have been studied

extensively in the past in both experiments and numerical simulations (Lilly [62],

Smith & Waleffe [97]). Then, we stopped the forced run at a statistically steady

state to provide the initial state R. Figure 6.2 shows the three-dimensional and the

two-dimensional kinetic energy spectra of state R.
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spectra of rotating turbulent state R.

Table 6.1: Description of decaying cases

Case Initial state Ω [rad/s] Roω3

E I 0 ∞

F R 1 0.41

G I 20 0.17

Case E started from isotropic turbulent state I, and did not include the Coriolis

force. Case F started from rotating turbulent state R, and retained the original

rotation rate of 1 [rad/s]. We will focus the discussion of various SGS models in

these two cases. In case G, isotropic turbulent state I was suddenly subjected to a

rotation. Figure 2.3 shows the time-evolution of kinetic energy in decaying turbulent

flows subject to different rotation rates. For our a-posteriori testing, we chose Ω =
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20 [rad/s] and the initial Roω3 = 0.17 as a moderate Rossby number (Bartello et al.

[7]).

At the a-posteriori test level, the “grid” level filter shape is never explicitly

specified in a large eddy simulation. We assumed the Gaussian filtering at the “grid”

level in order to obtain the filtered DNS results. Note that we filtered the 1283 DNS

data (including initial conditions) with kc = 21 to derive the 643 LES data (including

initial conditions) and with kc = 11 to derive the 323 LES data (including initial

conditions). We normalized time using initial eddy turn-over time in subsequent

discussions.

6.1.2 Performance of SM and SSM

In this section, we examine three simulations - the simulation without a model

(which simply omits τij in the simulation), the SM and the SSM. Figure 6.3 shows

the evolution of the resolved kinetic energy integrated over the entire computational

domain

Kr =

∫
1

2
uiui d~x . (6.1)

The decaying cases start at the initial Reynolds number of about 85, which

is exceedingly beyond the capability of 323 simulation (typically Reλ ∼ 30, Pope

[87]). Thus, the differences of Kr between the DNS and the 323 simulation without

a model are significant. Specifically, the 323 simulation without a model dissipates

kinetic energy insufficiently. Figure 6.4 illustrates that kinetic energy at small scales

is hardly dissipated. Together with the fact that a great amount of kinetic energy at

large scales transfers into small scales (Lumley [68]), kinetic energy is accumulating

at small scales that could eventually lead to an unstable simulation. The increase
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Figure 6.3: Evolution of resolved kinetic energy obtained from the filtered 1283

DNS, the 323 simulation without model, the 323 SM and the 323 SSM: (a) in

isotropic turbulent case E; (b) in rotating case F.
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of grid resolution from 323 (Fig. 6.3) to 643 (Fig. 6.5) facilitates the prediction of

the kinetic energy decay. However, for isotropic case E, the 643 simulation without a

model still yields a lower kinetic energy decay rate. In order to obtain proper kinetic

energy decay rates, turbulence modeling is undoubtedly needed for coarser grids.
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Figure 6.5: Evolution of resolved kinetic energy obtained from the filtered 1283

DNS, the 643 simulation without a model, the 643 SM and the 643 SSM (the 323

simulation without a model functions as a comparison reference): (a) in isotropic

turbulent case E; (b) in rotating case F.

Studies have explored that the SM yields excessive dissipation for many turbu-

lent flows, such as turbulent channel flows (Piomelli et al. [84]) and turbulent mixing

layers (Vreman et al. [108]). This proposition is also true for current decaying cases.

Figures 6.3 and 6.5 illustrate that the SM gives higher kinetic energy decay rates in

comparison with the filtered DNS results. Figure 6.4 shows that the SM dissipates

kinetic energy over all length scales excessively. Since in LES modeling the large scale
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Figure 6.6: Evolution of SGS energy production obtained from the filtered 1283

DNS, the 323 SM and the 323 SSM: (a) in isotropic turbulent case E; (b) in rotating

case F.

flows are solved explicitly, excessive dissipation at large scales may be considered as

an improper behavior.

The decay of the resolved kinetic energy in incompressible flow is described by

the following equation

DKr

Dt
=

∫
P (~x) d~x −

∫
εr(~x) d~x , (6.2)

where molecular dissipation εr = ν ∂ui

∂xj

∂ui

∂xj
, and SGS energy production (sometimes

referred to as “energy flux”) P = τij
∂ui

∂xj
. SGS energy production represents the

kinetic energy transfer from resolved scales to subgrid scales, and is regarded as the

kinetic energy source at subgrid scales. The rotational term will not explicitly appear

in this equation, since analytically (~Ω × ~u) · ~u = 0. The molecular dissipation is

always positive. However, we have observed that the magnitude (e.g., L2 norm) of

the molecular dissipation is much less (10 times) than the magnitude of the SGS
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energy production for a long period of time. Because current decaying cases initially

hold high Reynolds numbers, which indicates that a major part of kinetic energy

transfers first to subgrid scales and then to internal energy. Thus, we will mainly

focus on the SGS energy production to compare model performances.

Figure 6.6 shows the SGS energy production evolution obtained from the filtered

DNS, the SSM and the SM. The simulation without a model has no SGS energy

production, since no SGS model is adopted. The SM clearly yields higher SGS energy

production over a long period of time. Consistent with figures 6.3 and 6.5, this

indicates that too much kinetic energy is transferred to subgrid scales using the SM.

The GM and the SSM resolve many weaknesses of the SM: for instance, they

allow for “backscatter” and yield high correlations (ρ > 0.6) with the SGS stress

over a wide range of filter sizes (Liu et al. [64]). At the a-posteriori level, the

performances of these two models are also very similar. Thus, here we strive for

simplicity by illustrating only the SSM results. Figure 6.3 shows that, over a long

period of time, the SSM yields lower kinetic energy decay rates in both isotropic case

E and rotating case F. It is consistent with findings that the SSM dissipates kinetic

energy insufficiently and appears to be unstable (Bardina [2, 3]). For rotating case F,

the SSM performs as poorly as the simulations without a model. Kinetic energy at

small scales is accumulating and cannot be dissipated effectively as shown in figure

6.4. The primary cause of that is that the SSM yielded much lower SGS energy

production (Fig. 6.6). So, there is an insufficient transfer of kinetic energy to subgrid

scales using the SSM. Additionally, if the grid resolution is increased from 323 (Fig.

6.3) to 643 (Fig. 6.5), the SSM provides much better results at higher resolution.

The resolution dependence is a serious disadvantage of the SSM, since it implies the
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possibility that a model could give significantly different global results for different

resolutions.

6.1.3 Performance of DynSM, MixSSM, KEM and DSM

The DynSM, the MixSSM, the KEM and the DSM are developed to solve dis-

advantages of earlier models (e.g., the SM and the SSM). Many studies have explored

that these four models provide better agreement with the filtered DNS results for dif-

ferent turbulent flows, including isotropic turbulence (Kobayashi & Shimomura [54],

Pomraning & Rutland [85, 86]), turbulent mixing layer (Vreman [108]), and turbulent

channel flow (Piomelli et al. [81, 82]). We investigate them in figure 6.7 with respect

to the evolution of resolved kinetic energy. As mentioned in section 2.2.2, the DynSM

and the KEM are two eddy-viscosity models. They yield much more accurate results

than the SSM. For isotropic case E, however, the DynSM and the KEM still fail to

yield sufficient dissipation, and result in lower kinetic energy decay rates. For rotat-

ing case F, the DynSM slightly overestimates the kinetic energy decay. This result

is consistent with findings at high rotation rates (Horiuti [47]). The KEM performs

similarly as the DynSM for rotating case F. For isotropic case E, the MixSSM yields

more accurate kinetic energy decay rates than the SSM; and for rotating case F, the

MixSSM yields slightly better results than the SSM. The expressions of the DynSM,

the KEM and the MixSSM include eddy-viscosity terms (see section 2.2.2), but the

DSM is a one-equation non-viscosity model. Pomraning & Rutland [85, 86] found

that the DSM yields good results for low Reynolds number isotropic flows. For both

high-Reynolds number cases E and F, the DSM is also capable to provide dissipation,

and initially yields results similar to those of the other three models.
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Figure 6.7: Evolution of resolved kinetic energy obtained from the filtered 1283

DNS, the 323 DynSM, the 323 MixSSM, the 323 KEM, and the 323 DSM (the 323

SSM and the 323 SM function as comparison references): (a) in isotropic turbulent

case E; (b) in rotating case F.

Using a one-equation approach (e.g., the KEM and the DSM) enables us to

calculate the ratio of SGS kinetic energy (Ksgs =
∫

1
2
τii d~x) to total kinetic energy

(Ksgs + Kr), and this calculation describes the dominant level of subgrid scales to

resolved scales. Table 6.2 summarizes this ratio for different initial states. The subgrid

scale velocity field initially accounts for ∼ 35% of the turbulent kinetic energy at the

resolution of 323. The subgrid scale flows are of great intensity for current high-

Reynolds number turbulent flows, and thus, the imperfect modeling of SGS stress

may cause significant disagreement with the filtered DNS results as shown in figure

6.7.

It is important to examine the SGS energy production (Fig. 6.8) and the kinetic

energy spectrum (Fig. 6.9) to understand the model performances further. These
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Table 6.2: Ratios of initial SGS kinetic energy to total kinetic energy

Initial state Grid resolution Ksgs

Ksgs+Kr
× 100%

I 323 34.5

I 643 16.8

R 323 38.5

R 643 16.1
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Figure 6.8: Evolution of SGS energy production obtained from the filtered 1283

DNS, the 323 DynSM, the 323 MixSSM, the 323 KEM, and the 323 DSM (the 323

SSM functions as a comparison reference): (a) in isotropic case E; (b) in rotating

case F.

four models yield more accurate results than the SSM, and the DynSM has the best

results for both of the current cases over all. For rotating case F, the results from the

DynSM and the KEM are in better agreement with the filtered DNS data concerning

SGS energy production (Fig. 6.8(b)) and kinetic energy spectrum (Fig. 6.9(b)). For
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323 DynSM, the 323 MixSSM, the 323 KEM, and the 323 DSM (the 323 SSM

functions as a comparison reference): (a) in isotropic turbulence case E at

time = 0.4; (b) in rotating case F at time = 0.7.

isotropic case E, the KEM yields lower SGS energy prodocution (Fig. 6.8(a)). The

MixSSM delivers similar SGS energy productions as the DynSM for isotropic case E,

however, the MixSSM yields lower SGS energy production for rotating case F. For

both isotropic case E and rotating case F, the DSM under-predicts the SGS energy

productions. In conclusion, these four models deliver lower SGS energy production,

which means the under-prediction of kinetic energy transfer from resolved to subgrid

scales. To a certain degree, this fact causes lower kinetic energy decay rate as shown

in figure 6.7, and insufficient dissipation at small scales as shown in figure 6.9.

6.1.4 Assessment of new models

The new models, the MixGCDSM and the MixSCDSM, are examined in figures

6.10 and 6.11 with respect to the temporal variations of the resolved kinetic energy.
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Also the figures include the results for the resolution of 323 and 643, and the results

from the simulation without a model and the SM as comparison references. We

must note that at the a-posteriori level, the behaviors of the two new models are

very similar, and the curve computed from the MixSCDSM (−�−) covers the curve

computed from the MixGCDSM (−∇−) in many of the following plots. Traditional

models exhibit some disagreements more or less as shown in figures 6.3, 6.5 and 6.7.

However, the resolved kinetic energy results obtained from the new models, clearly,

are in excellent agreement with the filtered DNS data. Further, the new models

deliver consistent results for the grid resolutions of 323 and 643. This fact satisfies

the general expectation that LES predictions of turbulence statistics should depend

minimally on the resolution length scale (Pope [88]).
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Figure 6.10: Evolution of resolved kinetic energy of isotropic case E: (a) the 323

LES; (b) the 643 LES. Results obtained from the simulation without a model and

the SM are comparison references.
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Figure 6.11: Evolution of resolved kinetic energy of rotating case F: (a) the 323

LES; (b) the 643 LES. Results obtained from the simulation without a model and

the SM are comparison references.
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Figure 6.12: The kinetic energy decay rate from LES of two news models

(MixGCDSM and MixSCDSM): (a) in isotropic case E; (b) in rotating case F.

Figure 6.12 shows the kinetic energy decay rates over a very long period derived

from the filtered DNS data and the new models. The decay rate of isotropic turbulence
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Figure 6.13: Normalized (at k = 21) power spectrum of ∂τij/∂xj obtained from the

643 SM and the 643 MixGCDSM in the LES of isotropic case E.

is shown to be of the power-law form, and to depend on the initial conditions so that it

varies from −1.0 to −2.5 (George [37]). The MixGCDSM and the MixSCDSM predict

the decay rate (∼ −1.4) of isotropic case E very well. As mentioned in section 2.3.2,

rotating turbulence generally has slower decay rates. The new models also yield an

accurate decay rate (∼ −0.17) of rotating case F.

Figure 6.13 compares the SM (as a representative of eddy-viscosity model) and

the MixGCDSM with respect to a ∂τij/∂xj power spectrum, which is normalized by

the magnitude at k = 21. The influences of the MixGCDSM on large scale flows

are typically minor, and the SM yields more dissipation over all scales. The new

models are more favorable than models using eddy-viscosity closure in terms of the

avoidance of disturbing large scale flows. Figure 6.14 illustrates the kinetic energy
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Figure 6.14: 3D kinetic energy spectrum obtained from the filtered 1283 DNS, the

323 MixGCDSM, and the 323 MixSCDSM (the 323 without a model and the 323 SM

function as comparison references): (a) in isotropic turbulence case E at time = 0.4;

(b) in rotating case F at time = 0.7.
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Figure 6.15: Evolution of SGS energy production obtained from the filtered 1283

DNS, the 323 MixGCDSM, and the 323 MixSCDSM (the 323 SM functions as a

comparison reference): (a) isotropic case E; (b) rotating case F.
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Figure 6.16: Evolution of resolved molecular dissipation: (a) in isotropic case E; (b)

in rotating case F.

spectra obtained from the filtered DNS, the simulation without a model, the SM, the

MixGCDSM and the MixSCDSM. The new models yields more accurate results at

large scales than the SM, which clearly yields too much dissipation for large scale

flows. Also, the new models have delivered sufficient dissipation at small scales.

Figure 6.15 shows that the SGS energy production is reasonably well predicted

using the new models. As mentioned previously, the SGS energy production is gen-

erally larger than the molecular dissipation for our present cases. However, figure

6.16 offers a more complete comparison by examining the evolution of the normalized

(by initial value) molecular dissipation integrated over the domain. The presence of

too many small scales leads to the over-predicted molecular dissipation for the 323

simulation without a model and for the SSM. In this way the molecular dissipation

takes over part of the work that the SGS energy production should have performed.

The new models give very accurate molecular dissipation for isotropic case E, and
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give slightly lower levels of molecular dissipation for rotating case F. For rotating

case F, the new models compensate this trivial weakness by slightly over-predicting

SGS energy production as shown in figure 6.15(b). Thus, the new models yield very

accurate total kinetic energy dissipation so that they predict kinetic energy decay

rates very well as shown in figures 6.11 and 6.12(b).

6.1.5 Decay started with an isotropic turbulence

In this section, we assess the model performance using the decaying rotating

case G, which starts with an initial condition of isotropic turbulence. Results for this

case are similar to conclusions for cases E and F. So only a few results are shown.

Figures 6.17 and 6.18 examine the resolved kinetic energy and the kinetic en-

ergy spectrum that are at time = 1.0. Over all, the DynSM, the MixGCDSM and

the MixSCDSM deliver more accurate results than other models. The MixGCDSM

and the MixSCDSM are slightly too dissipative at the beginning. The DynSM is

slightly too dissipative at the later period. The SSM, the MixSSM and the DSM

yield insufficient dissipation, and this fact is associated with kinetic energy accumu-

lation at small scales as shown in figure 6.18. The KEM and the SM yield too much

dissipation, however, the results obtained from the KEM exhibit better agreement

with the filtered DNS data than the SM. Also, the kinetic energy spectra illustrate

that the SM dissipates kinetic energy excessively over a wide range of length scales.

6.2 Forced rotating turbulence

Decaying rotating turbulence, which ignores the effects of forcing, is a typical

setup for the assessment of SGS models (Kobayashi & Shimomura [54], Horiuti [47,
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48], Yang & Domaradzki [112]). Deardorff [31] and Piomelli & Liu [82] applied models

to rotating turbulence in channels, which involved certain kinetic energy sources.

Different from previous works, we include the Gaussian forcing in rotating turbulence

but exclude boundary layer effects of channel flows. We find that only the new models

can capture the anisotropic features of rotating turbulence with forcing. Note that

in subsequent discussions, we normalized time using the period of system rotation,

T = 2π/Ω, which is an external parameter.
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Figure 6.19: 1283 simulation of a large scale forced rotating turbulence: (a)

evolutions of Roω3 and the total kinetic energy K; (b) 3D & 2D kinetic energy

spectra in a quasi-steady state.

6.2.1 Large scale forcing

We have performed a rotating turbulent case (Ω = 24 [rad/s]) at the resolution

of 1283 to serve as the benchmark case. This case has hyper-viscosity for small scales,

and large scale (kf = 2.5) flows accept kinetic energy inputs via the Gaussian forcing.

Figure 6.19(a) shows the evolution of Roω3 and the total kinetic energy evolution.
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Figure 6.19(b) shows the 3D & 2D kinetic energy spectra in a quasi-steady state, in

which small scale flows have become statistically steady. A straight line of k−3 is

placed as a reference, but we do not assert that large scale forced rotating turbulence

should have E(k) ∝ k−3 in the inertial range. Currently, the understanding of kinetic

energy spectral behavior of large scale forced rotating turbulence remains incomplete.

The LES simulations have the same kinetic energy input setup as the 1283

simulation. We have turned off molecular viscosity, hypo- and hyper-viscosities. Thus,

kinetic energy can transfer first to subgrid scales and then to internal energy only with

the assistance of SGS models. All simulations have been performed at coarser grids,

323 or 643, and allowed to reach their statistically steady states.

6.2.1.1 Performance of traditional models

We have applied all SGS models (see section 2.2.2) to the LES of large scale

forced rotating turbulence. Figure 6.20 shows the 3D & 2D kinetic energy spectra in a

statistically steady state obtained from the SM, the SSM, the MixSSM and the DSM

at the grid resolution of 643. The resolved kinetic energy evolution of each simulation

is also presented. These models are good representatives of current SGS models.

However, except the MixSSM, other models fail to deliver the quasi two-dimensional

structure at large scales. All models fail to dissipate kinetic energy at small scales.

Among these models, the MixSSM has the best performance.
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Figure 6.20: 3D & 2D kinetic energy spectra in a statistically steady state in the

LES of large scale forced rotating turbulence using: (a) the 643 SM; (b) the 643

SSM; (c) the 643 MixSSM; (d) the 643 DSM. The evolution of Kr is included for

each case.

6.2.1.2 Assessment of the new models

The performance of the two new models is very similar to each other regarding

the a-posteriori test of decaying turbulence (section 6.1.4). Another instance of sim-

ilarity arises regarding the a-posteriori test of forced rotating turbulence. Thus, for

simplicity, only the results obtained from the MixGCDSM will be presented.
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Figure 6.21: 643 LES of large scale forced rotating turbulence using the

MixGCDSM: (a) evolutions of Roω3 and the resolved kinetic energy Kr; (b) 3D &

2D kinetic energy spectra in a statistically steady state.

Figure 6.21 examines the MixGCDSM with respect to the evolutions of Roω3 ,

the resolved kinetic energy evolution, and the 3D & 2D energy spectra in a statistically

steady state. We have matched Roω3 = 0.12 with the 1283 simulation by specifying

Ω = 8 [rad/s]. The MixGCDSM facilitates the two-dimensionalization process re-

sulting in very close 3D & 2D energy spectra at large scales, k . 7. Thus, we use the

averaged (in the z-direction) velocity field as shown in figure 6.22 to understand the

physical structures. Note that the z-averaged velocity field will not accord with the

resolved kinetic energy contour if the flow is still highly 3D. For instance, the velocity

fields as shown in figures 6.22(b) and 6.22(c) occur during a critical period, in which

2D flows at large scales are developing. Figure 6.22(b) shows that the resolved kinetic

energy contours did not match the velocity vectors, however, figure 6.22(c) shows that

they harmonized well with each other, and that two eddies are merging into a bigger
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one around the coordinate (x, y) ≈ (0, 1). Figure 6.22(d) shows a typical physical

field in a statistically steady state.

Figure 6.22: Time sequence of averaged (in the z-direction) resolved kinetic energy

contours and velocity vectors for the 643 LES of large scale forced rotating

turbulence using the MixGCDSM: (a) in an initial state; (b) at time = 63; (c) at

time = 155; (d) at time = 280.

The vortex regions are identified using the criterion λ2 < 0 (where, λ2 is the

second large eigenvalue of tensor SimSmj + ΩimΩmj , Sij = (∂ui/∂xj + ∂uj/∂xi)/2,



105

-20 0 20 40 60

0.00

0.05

0.10

0.15

0.20

0.25

0 200 400 600 800 1000 1200

0.0

0.2

0.4

0.6

0.8

P
D
F

ω
3

 filtered 128
3
 data

 64
3
 MixGCDSM

(a)

 64
3
 MixSSM

K
r
,
2
d
/
K
r

Time

 filtered 128
3
 data

 64
3
 MixGCDSM

 64
3
 MixSSM

(b)

Figure 6.23: Assessment of the MixGCDSM and the MixSSM with respect to: (a)

PDF of ω3, and (b) Kr,2d/Kr, in large scale forced rotating turbulence.

and Ωij = (∂ui/∂xj − ∂uj/∂xi)/2) for a vortex region in 2D (Jeong & Hussain [50]),

and are sampled over points (x, y) with λ2 < (1/6) min(λ2) to get PDF (ω3). Figure

6.23(a) compares the MixGCDSM and the MixSSM with respect to PDF (ω3). The

MixGCDSM successfully captures the symmetry breaking between cyclones and anti-

cyclones in favor of cyclones. The physical field in a steady state (Fig. 6.22(d))

also illustrates this feature clearly. None of traditional SGS models, including the

MixSSM, are able to capture both the quasi 2D feature and the cyclonic feature.

Further, figure 6.23(b) illustrates the temporal variations of the ratio of resolved 2D

kinetic energy to resolved (3D) kinetic energy, Kr,2d/Kr. The MixGCDSM does not

yield a ratio ∼ 0.9 as the 1283 simulation, however, the MixGCDSM delivers the

two-dimensionality much better than traditional models (Fig. 6.23(b)).

Referring to the integral length scale properties of fully developed rotating tur-

bulence, Cambon et al. [16, 15] have illustrated that 2L3
11 is no longer equal to L3

33,
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but yields the inequality of 2L3
11 > L3

33 (section 2.3.2). Figure 6.24 shows that the

MixGCDSM also successfully delivers this anisotropic feature, while other models fail.

The one-equation approach enables us to compute an effective dissipation at

subgrid scales, εe = Cc
k
3/2
sgs

∆
(see equation (2.46)), which is the total dissipation for

current turbulent flow since no other dissipations are included. Then, we can define

an effective micro-scale Reynolds number as

Ree =

(
20

3

K2
r

εeνe

) 1
2

, (6.3)

where effective molecular viscosity is νe = εe/
∫

2k2E(k) dk. In decaying cases E, F

and G, the initial Taylor micro-scale Reynolds number (∼ 85) is typically higher than

this effective micro-scale Reynolds number (∼ 30), because kinetic energy transfers
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into internal energy only partially through subgrid scales. Effective Reynolds number

provides the capability to evaluate the turbulent level of current LES without using

molecular viscosity. This 643 LES using the MixGCDSM yields Ree ≈ 300, and the

following 323 LES using the MixGCDSM yields Ree ≈ 400. These simulations are

undoubtedly performed at very high Reynolds numbers.

Figure 6.25 examines the MixGCDSM at the resolution of 323. The Rossby

number of the statistically steady state is Roω3 = 0.1. If compare the kinetic energy

spectrum plots 6.21(b) and 6.25(b), the model performs better on a finer resolution.

However, the MixGCDSM is still able to capture the cyclonic/anti-cyclonic asymme-

try in favor of cyclones on the coarser grid.
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Figure 6.25: Assessment of the 323 LES of large scale forced rotating turbulence

using the MixGCDSM: (a) PDF of ω3, and (b) 3D & 2D kinetic energy spectra of

statistically steady state.

In order to compare the differences between MFI-consistent models and incon-

sistent models, additionally in figure 6.26, we examine the MixDSM at the resolution
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Figure 6.26: Assessment of the 643 LES of large scale forced rotating turbulence

using the MixDSM: (a) PDF of ω3, and (b) 3D & 2D kinetic energy spectra of

statistically steady state.

of 643. The MixDSM includes the same hyper-viscosity term as the MixGCDSM (see

equation (3.8)), and thus, the MixDSM can better dissipate kinetic energy at small

scales than the DSM does. However, the MixDSM also fails to deliver the cyclonic

feature (Fig. 6.26(a)) and the quasi 2D feature (Fig. 6.26(b)).

6.2.2 Intermediate scale forcing

We have performed a 1283 rotating turbulent case (Ω = 13 [rad/s]) as a bench-

mark case. It is forced at kf = 12 and includes only hyper-viscosity. Such problems

have been studied extensively in numerical simulations (Smith et al. [97, 96]). Fig-

ure 6.27 shows the evolution of Roω3 , the total kinetic energy evolution, and the 3D

& 2D kinetic energy spectra in a quasi-steady state, in which small scale flows and

micro-scale properties (e.g., Roω3) have become statistically steady.
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Figure 6.27: 1283 simulation of rotating turbulence, which was force at kf = 12: (a)

evolutions of Roω3 and the total kinetic energy K; (b) 3D & 2D kinetic energy

spectra in a quasi-steady state.

6.2.2.1 Performance of SGS models

The LES simulation for this rotating turbulent case had the same kinetic energy

input setup as the 1283 simulation but are performed at a coarser grid, 643. The

molecular viscosity, hypo- and hyper-viscosities have been turned off, thus the kinetic

energy can transfer to large scales and into the formation of internal energy only with

the assistance of SGS models. All simulations reach statistically steady states.

Figure 6.28 shows the 3D & 2D kinetic spectra that were in a statistically steady

state obtained from the SM, the SSM, the MixSSM and the DSM. Clearly the SSM

and the DSM are not dissipative enough, and also fail to facilitate the reverse energy

transfer to large scales. The SM and the MixSSM include eddy-viscosities in their

model expression, and thus they facilitate to dissipate kinetic energy at small scales
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Figure 6.28: 3D & 2D kinetic energy spectra in a statistically steady state in the

LES of intermediate scale forced rotating turbulence using: (a) the 643 SM; (b) the

643 SSM; (c) the 643 MixSSM; (d) the 643 DSM. The evolution of Kr is included for

each case.

as shown in figure 6.28(a) and figure 6.28(c). To a certain degree, they facilitate the

reverse energy transfer to large scales.

In the simulation using the MixGCDSM, we have matched Roω3 = 0.16 with

the 1283 simulation by specifying Ω = 8 [rad/s]. The effective micro-scale Reynolds

number of this simulation is Ree ≈ 150. As shown in figure 6.29, the MixGCDSM
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Figure 6.31: Time sequence of averaged (in the z-direction) resolved kinetic energy

contours and velocity vectors obtained from the 643 LES of intermediate scale

forced rotating turbulence using the MixGCDSM: (a) in an initial state; (b) at

time = 56; (c) at time = 96; (d) at time = 257.

delivers better results than traditional models (Fig. 6.28) regarding dissipation at

small scales and reverse energy transfer to large scales.

SGS models are compared in figure 6.30 with respect to PDF (ω3) obtained from

the 1283 simulation, the SM, the SSM, the MixSSM, and the MixGCDSM. Figure
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6.31 shows the time sequence of the z-averaged resolved kinetic energy contours and

velocity vectors obtained from the 643 MixGCDSM. Both figures illustrate that the

MixGCDSM successfully delivers the symmetry breaking between cyclones and anti-

cyclones in favor of cyclones.

6.3 Summary

Tables 6.3 and 6.4 summarize the results for SGS models at the a-posteriori

test level. The models are listed with symbols to indicate if they performed poorly

or well on each diagnostic.

Table 6.3: Comparison of model performance in the LES of decaying turbulence

(initially with high Reynolds number) at the a-posteriori test level

Diagnostic SM KEM DynSM SSM MixSSM DSM MixSCDSM MixGCDSM

Kinetic energy − 0 0 − − − + +

SGS energy production − 0 0 − − − + +

Molecular dissipation 0 0 0 − − − + +

Energy spectrum − + + − + − + +

The symbols − and + refer to bad and good results. The symbol 0 refers to bad results in isotropic case, but good results in rotating

turbulent case.

As is well known, eddy-viscosity models facilitate to transfer kinetic energy only

from resolved scales to subgrid scales, and they are also too dissipative. The SM yields

excessive dissipations for both high-Reynolds number isotropic and rotating turbulent

flows. The DynSM and the KEM yield very accurate results for high-Reynolds number

rotating turbulence, even though, they are slightly over dissipative.
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Table 6.4: Comparison of model performance in the LES of forced rotating

turbulence at the a-posteriori test level

Diagnostic SM SSM MixSSM DSM MixDSM MixSCDSM MixGCDSM

Cyclonic structure − − − − 0 + +

Quasi 2D flow − − − − 0 + +

The symbols − and + refer to bad and good results. The symbol 0 refers to bad results in large scale forced rotating turbulence, but

good results in intermediate scale forced rotating turbulence.

The mixed approach is a remarkable improvement in LES modeling. First, the

additional eddy-viscosity term is usually much smaller than the original structure

term. An analytical point of view is that the mixed eddy-viscosity term is modeling

of the higher order term in the Taylor expansion of SGS stress, or the modified SGS

Reynolds stress term. Also, the eddy-viscosity term is trace free. So, it will not

change the trace of the original structure term, and mixed dynamic structure models

still satisfies the trace requirement τmodel
ii = τii. Further, the eddy-viscosity term

significantly facilitates the kinetic energy dissipation at small scales and stables the

simulations.

It is important to note that the MixGCDSM is a very fast numerical approach.

The following table compares the models with respect to the average calculation time

per step on Intel’s 64-Bit Pentium 4 3.4GHz CPU in the decaying turbulent cases at

the resolution of 323

TSM : TKEM : TMixGCDSM : TSSM : TDSM : TMixSCDSM : TDynSM : TMixSSM ≈

1.00 : 1.15 : 1.15 : 2.46 : 4.83 : 5.23 : 7.69 : 13.0 ,
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where we normalized all values by the calculation time of the SM. A few interesting

points, which are helpful to choose models and build computational efficient codes,

are revealed. First, the test filtering and the determining of the dynamic coefficient

(e.g., CD and CSSM
D ) based on Germano identity slow down calculations significantly.

There exist increased calculational costs from 1.0 when using the SM to 7.69 when

using the DynSM, and 13.0 when using the MixSSM. Further, the solving of additional

SGS energy equation does not increase the computer time very much in comparison

with the test filtering and determining of the dynamic coefficient. For instance,

compared with the SM, the one-equation eddy-viscosity model - the KEM, has only

increased calculation time by 15%. At last, we state that the using of pseudo-spectral

method allows to calculate gradients very efficiently in Fourier space. It facilitates

to reduce the computational cost of using the SM, the KEM, and the MixGCDSM.

Finite difference/volume/element methods may not have this advantage.
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Chapter 7

Conclusion

In LES, the large scale flows are explicitly solved, and the small scale motions

are modeled. Traditionally, SGS models are based on the assumption that small scale

flows are homogeneous and isotropic, and do not account for any anisotropy including

rotational effects. However, rotating turbulence has many well known anisotropic fea-

tures, such as quasi 2D flow at large scales and cyclonic structures. The performances

of traditional models in the LES of rotating turbulence are questioned.

The purposes of this project are to study the performances of various SGS

models and to develop models better suited to rotating turbulence. The current work

has used a-priori and a-posteriori tests to accomplish the purposes. At the a-priori

level, models were examined and compared using correlation and regression coeffi-

cients, from traditional eddy viscosity models to new one-equation models introduced

herein. At the a-posteriori level, we achieved a systematic investigation of the model

performance in the actual LES of rotating turbulence including decaying and forced

cases.

The modeling of the SGS stress was considered from a theoretical standpoint

- the consistency with the constraints of material frame indifference. Under the

Euclidean group of transformations, the SGS stress tensor in an inertial frame is

connected to the SGS stress tensor in a rotating frame according to a fame different
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expression. The stress tensor is of course important, because it appears in the SGS

kinetic energy equation. The modeled stress tensor is assumed be MFI-consistent

with the actual stress tensor, otherwise, modeling errors will be certainly added into

the fluid dynamic system.

Most traditional SGS models, including eddy viscosity models and the SSM have

no explicit method to account for anisotropy of length scales and MFI-consistence,

and thus they perform poorly in rotating turbulence. We examined additional models

(the KEM and the DSM) that showed somewhat better results, but still do not satisfy

the consistency with MFI at the stress tensor level, and therefore failed to capture

the anisotropy effects due to rotation.

To account properly for MFI, we introduced two new one-equation models which

are variants of the dynamic structure model, namely the GCDSM and the SCDSM.

By construction these new models satisfy the consistency with MFI and the trace

requirement τmodel
ii = 2ksgs. Accordingly these new models greatly improve the re-

gression coefficients for modeling components in all directions.

Eddy viscosity models fail to give good correlation coefficients in both isotropic

and rotating turbulence, and these coefficients are lower for rotating turbulence. Also,

eddy viscosity models are purely dissipative, and analysis of the SGS energy produc-

tion shows that the SM and the KEM are too dissipative at all scales in rotating

turbulence. This is not surprising since eddy viscosity models are originally con-

ceived for isotropic turbulence, and it is well known that strong rotating inhibits

the forward cascade of energy leading to lower levels of the energy dissipation rate.

In the a-posteriori tests of decaying turbulence, the SM was confirmed to dissipate

excessively over all scales.
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At the a-posteriori test level, we added a hyper-viscosity term to the GCDSM

and the SCDSM, and formed their mixed versions: the MixGCDSM and the MixSCDSM.

The mixed approaches are more helpful to dissipate kinetic energy at small scales than

the original models. Also, compared with the traditional approach of using an eddy-

viscosity term, the effects of a hyper-viscosity term at large scales are significantly

smaller. This fact is a desired feature of LES modeling.

In decaying turbulence testing, the MixGCDSM and the MixSCDSM are promis-

ing, and yield more accurate results than other models in many aspects, such as

resolved kinetic energy, SGS energy production, molecular dissipation, and energy

spectrum. These results also are consistent at different resolutions. In forced rotating

turbulence testing, the MixGCDSM and the MixSCDSM have shown their capabilities

to deliver major anisotropic features of rotating turbulence.
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APPENDIX

The third order Runge-Kutta (RK3) with

integrating factors

Integrating Factors

Consider the PDE

ût = f̂k(û) − νk2û , (A.1)

where û(k, t) is the Fourier transform of u(x, t) and f̂k(û) is the Fourier transform

of a term nonlinear in u(x, t). The linear term −νk2û is in this case the Fourier

transform of ν∇2u(x, t). The method described below, however, can be generalized

to any linear term. Equation (A.1) may be re-written as

(û exp(νk2t))t = f̂k exp(νk2t) , (A.2)

where exp(νk2t) is an integrating factor.

Let’s illustrate the integrating factor method for the explicit Euler scheme for

yt = g(y)

yn+1 − yn

δt
= g(yn) = gn(y) , (A.3)

where the superscript denotes the time step. Applying this scheme to (A.2) we have

ûn+1 exp(νk2(t + δt)) − ûn exp(νk2t)

δt
= f̂n

k exp(νk2t) . (A.4)

Re-arranging (A.4), we write

ûn+1 =
[
ûn + δtf̂n

k

]
exp(−νk2δt) . (A.5)
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Thus the nonlinear term is calculated as usual, and multiplication by the factor

exp(−νk2δt) . (A.6)

accounts for the linear term in the original equation (A.1).

RK3 with Integrating Factors

Let’s review RK3 for dy/dt = f(y) and time step h = δt. We first calculate ỹ

at t + h/3

ỹ = yn + (h/3)k1 , k1 = f(yn) . (A.7)

Then calculate ŷ at t + 2h/3 using f(ỹ)

ŷ = yn + (2h/3)k2 , k2 = f(ỹ) = f(yn + (h/3)k1) . (A.8)

Then calculate yn+1 at t + h using (1/4)f(yn) and (3/4)f(ŷ)

yn+1 = yn + (h/4)k1 + (3h/4)k3 , k3 = f(ŷ) = f(yn + (2h/3)k2) , (A.9)

with k1 and k2 as defined in (A.7) and (A.8), respectively.

Now consider the equation

yt + νk2y = f(y) , (A.10)

or re-written using the integrating factor exp(νk2t) as

(y exp(νk2t))t = f(y) exp(νk2t) . (A.11)

For RK3, one multiplies by exp(−νk2h), where h is the multiple of δt appropriate for

each RK3 “step.” We first calculate ỹ at t + h/3

ỹ exp(νk2(t + h/3)) − yn exp(νk2t)

h/3
= f(yn) exp(νk2t) . (A.12)



132

Solve for ỹ and find

ỹ = [yn + (h/3)f(yn)] exp(−νk2h/3) . (A.13)

Next calculate ŷ at 2h/3 using f(ỹ)

ŷ exp(νk2(t + 2h/3)) − yn exp(νk2t)

2h/3
= f(ỹ) exp(νk2(t + h/3)) . (A.14)

Solve for ŷ and find

ŷ = yn exp(−νk22h/3) +
2h

3
f(ỹ) exp(−νk2h/3) . (A.15)

Finally calculate yn+1 at t + h using (1/4)f(yn) and (3/4)f(ŷ)

yn+1 exp(νk2(t + h)) − yn exp(νk2t)

h
=

1

4
f(yn) exp(νk2t)+

3

4
f(ŷ) exp(νk2(t+

2h

3
)) .

(A.16)

Solve for yn+1 and find

yn+1 = yn exp(−νk2h) +
h

4
f(yn) exp(−νk2h) +

3h

4
f(ŷ) exp(−νk2h/3) . (A.17)
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APPENDIX

Derivation of exact τij and ksgs equations

The conservation law of momentum for un-filtered and filtered fields are of terms

∂ui

∂t
+

∂uium

∂xm
= −∂P

∂xi
− 2ǫimnΩmun + ν

∂2ui

∂xm∂xm
+ fi , (B.1)

∂ui

∂t
+

∂uium

∂xm
= −∂P

∂xi
− 2ǫimnΩmun + ν

∂2ui

∂xm∂xm
− ∂τim

∂xm
+ f i , (B.2)

where the SGS stress tensor is τij = uiuj − uiuj. Now we take (B.1) time with uj to

obtain

uj
∂ui

∂t
+ uj

∂uium

∂xm
= −uj

∂P

∂xi
− 2ǫimnΩmunuj + νuj

∂2ui

∂xm∂xm
+ fiuj . (B.3)

Change subscription of i and j to get

ui
∂uj

∂t
+ ui

∂ujum

∂xm
= −ui

∂P

∂xj
− 2ǫjmnΩmunui + νui

∂2uj

∂xm∂xm
+ fjui . (B.4)

Add equation (B.3) and (B.4) together

∂uiuj

∂t
+

∂uiujum

∂xm
= −

(
ui

∂P

∂xj
+ uj

∂P

∂xi

)
− (2ǫimnΩmunuj + 2ǫjmnΩmunui)

+ ν
∂2uiuj

∂xm∂xm
− 2ν

∂ui

∂xm

∂uj

∂xm
+ (fiuj + fjui) . (B.5)

Similarly for the filtered momentum equation (B.2) we can get

∂uiuj

∂t
+

∂uiujum

∂xm
= −

(
ui

∂P

∂xj
+ uj

∂P

∂xi

)
− (2ǫimnΩmunuj + 2ǫjmnΩmunui)

−
(

uj
∂τim

∂xm
+ ui

∂τjm

∂xm

)

+ ν
∂2uiuj

∂xm∂xm
− 2ν

∂ui

∂xm

∂uj

∂xm
+
(
f iuj + f jui

)
. (B.6)
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Now we subtract equation (B.6) from the filtered equation (B.5) to have the

exact SGS stress tensor equation

∂τij

∂t
+

∂τijum

∂xm
= −

[(
ui

∂P

∂xj
− ui

∂P

∂xj

)
+

(
uj

∂P

∂xi
− uj

∂P

∂xi

)]

− (2ǫimnΩmτnj + 2ǫjmnΩmτni)

− ∂ (uiujum − uiuj um)

∂xm
+

(
uj

∂τim

∂xm
+ ui

∂τjm

∂xm

)

+ ν
∂2τij

∂xm∂xm
− 2ν

(
∂ui

∂xm

∂uj

∂xm
− ∂ui

∂xm

∂uj

∂xm

)

+
[(

fiuj − f iuj

)
+
(
fjui − f jui

)]
. (B.7)

Take the trace of equation (B.7), ksgs equation is of the form

∂ksgs

∂t
+ uj

∂ksgs

∂xj

= −
(

ui
∂P

∂xi

− ui
∂P

∂xi

)

− ∂

∂xj

(
1

2
τuiuiuj

− uiτij

)
+ ν

∂2ksgs

∂xj∂xj
− ε

− τijSij +
(
fiui − f iui

)
, (B.8)

where

ε = ν

(
∂ui

∂xj

∂ui

∂xj

− ∂ui

∂xj

∂ui

∂xj

)
, (B.9)

τuiuiuj
= uiuiuj − uiui uj . (B.10)
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APPENDIX

Derivation of the modeling of the modified cross

term

Denote three different length scale filter functions as:

f ∆1

f̂ ∆2

f̃ ∆3

. The exact

SGS stresses are of the form

τij = uiuj − uiuj . (C.1)

Velocity can be decomposed by filtered and SGS velocities

ui = ûi + u′
i . (C.2)

Hence stresses are expressed as

τij =
(
ûiûj − ûiûj

)
+
(
ûiu′

j + u′
iûj − ûiu′

j − u′
i ûj

)
+
(
u′

iu
′
j − u′

i u
′
j

)

= LM
ij + CM

ij + RM
ij , (C.3)

where

LM
ij = ûiûj − ûiûj , (C.4)

CM
ij = ûiu′

j + u′
iûj − ûiu′

j − u′
i ûj , (C.5)

RM
ij = u′

iu
′
j − u′

i u
′
j . (C.6)

For the cross term CM
ij , we assume

ui ≈
√

CC ũi , (C.7)

u′
i ≈

√
CC ũ′

i = ũi − ˜̂ui . (C.8)
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We can have

CM
ij = CC

[(
̂̃uiũj − ̂̃uiũj

)
+
(
ũi
̂̃uj − ũi

̂̃uj

)

−
(
̂̃ui
˜̂uj − ̂̃ui

˜̂uj

)
−
(
˜̂ui
̂̃uj − ˜̂ui

̂̃uj

)]
. (C.9)

It can be proved analytically and numerically that f̂ = f̂ for homogeneous filter

function. Hence the cross term is of the form

CM
ij = CC

[(
̂̃uiũj − ̂̃uiũj

)
+
(
ũi
̂̃uj − ũi

̂̃uj

)
− 2

(
̂̃ui
̂̃uj − ̂̃ui

̂̃uj

)]
. (C.10)

If ∆1 = ∆2 = ∆3, then

CM
ij = CC

[(
uiuj − uiuj

)
+
(
uiuj − uiuj

)
− 2

(
uiuj − uiuj

)]
. (C.11)




