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Abstract

The subgrid-scale (SGS) parameterization represents a critical compo-
nent of a successful large-eddy simulation (LES). It is known that in LES
of high-Reynolds-number atmospheric boundary layer turbulence, standard
eddy-viscosity models poorly predict mean shear in the near-wall region and
yield erroneous velocity profiles. In this paper, a modulated gradient model is
proposed. This approach is based on the Taylor expansion of the SGS stress,
and uses local equilibrium hypothesis to evaluate the SGS kinetic energy. To
ensure numerical stability, a clipping procedure is used to avoid local kinetic
energy transfer from unresolved to resolved scales. Two approaches are con-
sidered to specify the model coefficient: a constant value of 1, and a simple
correction to account for the effects of the clipping procedure on the SGS en-
ergy production rate. The model is assessed through a systematic comparison
with well-established empirical formulations and theoretical predictions of a
variety of flow statistics in a neutral atmospheric boundary layer. Overall, the
statistics of the simulated velocity field obtained with the new model show
good agreement with reference results and a significant improvement com-
pared to simulations with standard eddy-viscosity models. For instance, the
new model is capable to reproduce the expected log-law mean velocity profile
and power-law energy spectra. Simulations also yield streaky structures and
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near-Gaussian probability density functions of velocity in the near-wall region.
It is found that using a constant coefficient of 1 yields a slightly excessive SGS
dissipation, which is corrected when the coefficient is modified using the above
mentioned correction.

1 Introduction

Large-eddy simulation (LES) of anisotropic turbulent flows has been an active and
challenging field since the 1960s. In LES, large scales are explicitly resolved, while
effects of subgrid-scales (SGS) are parameterized. SGS modeling is necessarily based
on simple assumptions and phenomenological theories. Even though most SGS
models assume a universal behavior of small scales, this assumption often breaks
down due to flow anisotropy affecting the unresolved scales, for instance near the
surface in high-Reynolds-number boundary layer flows. As a result, several studies
[1, 2, 3, 4] have shown that simulation results are highly sensitive to the SGS model
as well as to the grid resolution.

Most simulations of atmospheric boundary layer (ABL) turbulence have been
achieved using eddy-viscosity based SGS models [5, 6, 7, 3]. The eddy-viscosity clo-
sure assumes a one-to-one correlation between the SGS stress tensor and the strain
rate tensor, and locally employs the same eddy-viscosity for all directions. However,
a-priori analysis of velocity fields obtained from experiments [8, 9] and direct numer-
ical simulations (DNS) [10, 11] has confirmed the low correlation between the SGS
stress tensor and the strain rate tensor. Studies of Khanna and Brasseur [12], Juneja
and Brasseur [13], and Porté-Agel et al. [3] have also shown that on coarse grids
eddy-viscosity models may induce large errors because they are not able to account
for the strong flow anisotropy in the near-wall region. Moreover, eddy-viscosity mod-
els do not have the same rotation transformation properties as the actual SGS stress
tensor, which is not material frame indifferent (MFI). Recent studies [14, 15, 11, 16]
have revisited the importance of the MFI-consistency of the modeled SGS stresses.
In LES of meso-scale and large-scale atmospheric turbulence including planetary
rotation, eddy-viscosity models induce extra errors and yield unsatisfactory results,
such as the incapability of capturing cyclone/anti-cyclone asymmetry in favor of
cyclone [16]. In addition, eddy-viscosity models are by construction fully dissipa-
tive, and do not allow energy transfer from unresolved to resolved scales. However,
such inverse energy transfer is known to occur, especially in anisotropic turbulence
[17, 18].

Gradient models, also referred to as non-linear models, have been proposed since
the late 1970s [19]. They are based on the Taylor expansion of the SGS stresses,

τij = ũiuj − ũiũj = G̃ij + O(∆4), where the gradient term is G̃ij = ∆̃2

12

(
∂ũi

∂xk

∂ũj

∂xk

)

for isotropic Gaussian filter of size ∆̃. The model has several important advantages
[8, 20, 21, 11]: (i) it does not require an extra filtering; (ii) it satisfies Galilean
invariance and the modeled stress tensor is MFI-consistent with the actual SGS
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stress tensor; (iii) at the a-priori test level, the analysis has shown the modeled
SGS stresses exhibit good correlations with the actual SGS stresses over a wide
range of filter sizes; (iv) it only relies on local velocity gradients and thus is easy
to be applied to turbulent flows in complex geometries; and (v) it allows energy
transfer from small to large scales. However, the standard gradient model has also
one important limitation: when implemented in LESs, it hardly dissipates small-
scale turbulence, as a result, simulations become numerically unstable.

Different schemes have been introduced to resolve this insufficient small-scale
dissipation issue for high-correlation models. In 1980, Bardina et al. [22] introduced
a mixed procedure, which is a linear combination of a scale-similarity model and an
eddy-viscosity model. Vreman et al. [23] and Lu et al. [16] have also applied a simi-
lar mixed procedure with the gradient model and shown that mixed gradient models
are able to capture disequilibrium and anisotropy effects. In 1994, Liu, Meneveau
and Katz [8] revisited this energy cascade issue and recommended another mean-
ingful choice, a clipping procedure, to control the amplitude of backward cascade
induced by the model. Inconveniently, Vreman et al. [23] have reported that the
modified (coupled with clipping) gradient model still does not provide sufficient SGS
dissipation in simulations of mixing flows. We have also found a similar limitation
of this scheme in simulations of ABL turbulence.

In an effort to improve the correlation as well as the magnitude of the SGS
stress, Pomraning et al. [24] introduced a one-equation scheme, which models the
SGS stresses as τij = ksgsCij. The SGS kinetic energy, ksgs = 1

2
(ũiui − ũiũi), is

calculated solving an additional prognostic equation. Note that the nondimensional
tensor Cij must satisfy Ckk = 2. Applying the same model at the test filtering

level and assuming scale invariance of Cij, one can write Tij = ũiuj − ũiũj = KCij.
Integrating it into the Germano identity [25], one finds Lij = Tij − τ ij = KCij −
ksgsCij ≈

(
K − ksgs

)
Cij, where Lij = ũiũj−ũiũj is the Leonard stress. The resulting

model has a simple algebraic expression, τij = 2ksgs

(
Lij

Lkk

)
; the structure of τij is

extracted from the Leonard stress, and the magnitude of τij is determined by the
SGS kinetic energy. This model yields good agreement with filtered DNS data of
low-Reynolds-number isotropic turbulence; however, it has some limitations, such
as insufficient dissipation in high-Reynolds-number flow simulations, and the fact
that the Leonard stress tensor is not MFI-consistent with the actual SGS stress
tensor. To address those limitations, Lu et al. [11, 16] proposed and examined two
revisions, that yielded outstanding results in LES of high-Reynolds-number isotropic
and rotating turbulence. One revision is constructed using the gradient term G̃ij,
therefore inheriting some of the features of gradient models. In a-priori tests [11],
this model yields improved results (with respect to many other models) in terms of
correlation and regression coefficients between measured and modeled components
of the SGS stress tensor, components of the divergence of the SGS stress, and the
SGS energy production term.

We focus on the development of a simple alternative to the standard eddy-
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viscosity closure, and propose (in section 2) a computationally inexpensive mod-
ulated gradient model that uses the local equilibrium hypothesis to estimate the
SGS kinetic energy and adopts a clipping procedure to avoid local energy transfer
from unresolved to resolved scales. The performance of the modulated gradient
model is tested in simulations of a high-Reynolds-number neutral ABL. Section 3
describes the governing equations and numerical setup, and section 4 presents the
LES results. Section 5 summarizes the findings.

2 The modulated gradient model

Motivated by recent studies [11, 16], we propose a modulated gradient model as

τij = 2ksgs

(
G̃ij

G̃kk

)
. (1)

To account for the grid anisotropy (when ∆̃x, ∆̃y and ∆̃z are not equal), G̃ij is
defined as

G̃ij =
∆̃2

x

12

∂ũi

∂x

∂ũj

∂x
+

∆̃2
y

12

∂ũi

∂y

∂ũj

∂y
+

∆̃2
z

12

∂ũi

∂z

∂ũj

∂z
. (2)

The SGS kinetic energy ksgs is evaluated using the resolved velocities. To do that, we
use the ‘local’ equilibrum hypothesis, which assumes a balance between SGS energy
production P and dissipation rate ε. SGS energy production is defined as P =

−τij
∂ũi

∂xj
= −τijS̃ij. A simple evaluation of kinetic energy dissipation is ε = Cε

k
3/2
sgs

∆̃
,

and the coefficient is assumed to be Cε = 1 based on previous studies [26, 27]. Using
the proposed model formulation (equation (1)) together with the local equilibrium

hypothesis, one may obtain ksgs = 4∆̃2

C2
ε

(
− G̃ij

G̃kk
S̃ij

)2

and ε = 8∆̃2

C2
ε

(
− G̃ij

G̃kk
S̃ij

)3

. To

ensure numerical stability, no local energy transfer from unresolved to resolved scales
is allowed, which is consistent with the fact that dissipation rate is nonnegative, and
thus

ksgs =

{
4∆̃2

C2
ε

(
− G̃ij

G̃kk
S̃ij

)2

if G̃ijS̃ij < 0

0 otherwise
(3)

It is important to point out that the value of Cε = 1 is based on the assumption
of an averaged energy balance between SGS energy production and dissipation rate
in the inertial subrange of high-Reynolds-number turbulence (see Ch. 13 of [28]).
Considering that the clipping procedure eliminates the contribution of inverse energy
transfer (P < 0), a value of Cε = 1 is likely to overestimate the SGS energy transfer
rate. Therefore, it is of interest to have a correction coefficient C to modify Cε

such that 〈ε〉C can represent the actual dissipate rate more accurately, where the

subscript ‘C’ denotes conditional average requiring −G̃ijS̃ij ≥ 0. In the case of
homogeneous boundary layers, like the one considered here, averaging is performed
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over homogeneous directions (horizontal planes). A simple solution for C is obtained,
based on information contained in the resolved scales,

C =

√√√√
〈(

− G̃ij

G̃kk

S̃ij

)3〉

C

·
〈(

− G̃ij

G̃kk

S̃ij

)3〉−1

. (4)

Thus, an adjusted SGS kinetic energy to be used in the modulated gradient model
is

ksgs =

{
4∆̃2

(Cε C)2

(
− G̃ij

G̃kk
S̃ij

)2

if G̃ijS̃ij < 0

0 otherwise
(5)

In summary, equations (1), (3), (4) and (5) form the basis of the new modulated
gradient model. It should be noted that the model retains advantageous features
of the standard gradient model and, in addition, it is expected to have improved
dissipation characteristics. Next, the model is tested in simulations of the well-
established case of a high-Reynolds-number turbulent boundary layer flow over a
homogeneous surface. To isolate the effect of the correction given by equation (4)
on the model performance, two versions of the model are tested: (i) a ‘baseline’
model that uses equation (3) (same as equation (5) with C = 1) to estimate the
SGS kinetic energy; and (ii) a ‘corrected’ model that uses equation (4) to compute
the correction coefficient C and uses equation (5) to estimate the SGS kinetic energy.

3 Problem formulation

We use a modified LES code which has been used for other studies [29, 30, 3, 31,
32, 33]. The code solves the filtered Navier-Stokes equations

∂ũi

∂xi

= 0 ,
∂ũi

∂t
+

∂ũiũj

∂xj

= − ∂p̃

∂xi

− ∂τij

∂xj

+ f̃i , (6)

where p̃ is the effective pressure, f̃i is a forcing term, and the SGS stress tensor
is τij = ũiuj − ũiũj. The simulated flow is driven by a constant pressure gradient
−u2

∗/H in the x-direction. Since the Reynolds number is high, no near-ground
viscous processes are resolved, and the viscous term is neglected in the momentum
equation. The paper focuses on the case of neutral stability conditions, thus no
additional terms concerning buoyancy effects and rotational effects are considered.

The numerical setup is classical and has been used for many applications and
model assessments (e.g. [30, 3]). The simulated ABL is horizontally homoge-
neous. The horizontal directions are discretized pseudo-spectrally, and vertical
derivatives are approximated with second-order central differences. The grid planes
are staggered in the vertical with the first vertical velocity plane at a distance
∆z = H/(Nz − 1) from the surface, and the first horizontal velocity plane ∆z/2
from the surface. The height of the computational domain is H = 1000m, and
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the horizontal dimensions of the simulated volume are Lx = Ly = 2πH . The
domain is divided into Nx, Ny, and Nz uniformly spaced grid points. We carried
out simulations with resolutions of Nx × Ny × Nz = 24 × 24 × 24, 32 × 32 × 32,
48 × 48 × 48, 64 × 64 × 64, 96 × 96 × 96 and 128 × 128 × 128. The filter width is
computed using the common formulation ∆̃ = (∆x ∆y ∆z)1/3, where ∆x = Lx/Nx

and ∆y = Ly/Ny. The corresponding aliasing errors are corrected in the nonlinear
terms according to the 3/2 rule [34]. The time advancement is carried out using a
second-order-accurate Adams-Bashforth scheme [34]. All simulations have reached
their statistically steady state.

The upper boundary conditions are ∂ũ1

∂z
= 0, ∂ũ2

∂z
= 0, and ũ3 = 0. At the

bottom surface, the instantaneous wall stress is related to the velocity at the first
vertical node through the application of the Monin-Obukhov similarity theory [35].
Although this theory was developed for mean quantities, it is common practice [6]
in LES of atmospheric flows to use it for instantaneous fields as follows

τi3|w = −u2
∗

ũi

U(z)
= −

(
U(z) κ

ln (z/z0)−ΨM

)2
ũi

U(z)
(i = 1, 2) , (7)

where τi3|w is the instantaneous local wall stress, u∗ is the friction velocity, z0 is the
roughness length, κ is the von Kármán constant, ΨM is the stability correction for
momentum, and U(z) is the plane averaged resolved horizontal velocity. We adopt
κ = 0.4 in this paper. In the literature, there are some variations on this value but
generally they are within 5%. We take u∗ = 0.45ms−1 and z0 = 0.1m, which is a
similar setup as some previous studies [1, 29, 3]. In the case of neutral stability,
ΨM = 0. The instantaneous resolved horizontal velocity is computed at a height
of z = ∆z/2. We use this classical scheme in order not to confuse effects with the
SGS modeling which is the focus of the present work. Further, to reduce the error
incurred by using a finite-difference approach to compute the vertical derivative of
the nonlinear convective term ũ3∂ũ1/∂z, we have employed a correction factor [3]
at the bottom layer. This correction only improves the mean velocity profile in the
lower levels, and appears to have no effect on other statistics.

4 Results and discussion

A series of large-eddy simulations with varying grid resolutions has been carried out
using the baseline model, as well as the corrected model. For simplicity, ‘simulation
using the baseline model’ is abbreviated to ‘baseline simulation,’ and ‘simulation
using the correct model’ is abbreviated to ‘corrected simulation.’ Mean and turbu-
lent statistics are gathered after statistically steady states were reached. In some
subsections, we take the 64×64×64-nodes simulation and the 128×128×128-nodes
simulation as base cases to present results. Also, we adopt the most commonly used
symbols (u, v and w) for the three velocity components.
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4.1 Comparison with similarity theory predictions

In fluid dynamics, the log-law, which was first published by Theodore von Kármán
[36], states that the mean streamwise velocity at a certain point in a turbulent
boundary layer is proportional to the logarithm of the distance from that point to
the wall. It is a self similar solution for the mean velocity parallel to the wall. The
theory has been experimentally confirmed in a number of field experiments such as
the Kansas experiment [35] and represents one of the most firmly established results
against which new SGS models should be compared. For high-Reynolds-numbers
boundary layer flows, where viscous effects can be negligible, it can be written as

< ũ >= u∗
κ

ln
(

z
z0

)
, where < · > represents time and horizontal averaging in our

study. The aerodynamic roughness, z0, is necessarily nonzero since the log-law does
not apply to the viscous sublayer.
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Figure 1: Normalized mean streamwise velocity profile in a semi-logarithmic scale:
(a) results from low-resolution baseline simulations; (b) results from high-resolution
baseline simulations. The dashed line corresponds to the classical log-law with
κ = 0.4.

Though the log-law is a good approximation for the velocity profile of boundary
layer turbulence, it is only technically applicable to the so-called surface layer, which
occupies the lowest 10%− 20% of the flow in the atmospheric boundary layer. The
mean streamwise velocity profile from different resolution baseline simulations and
corrected simulations are presented in figure 1 and figure 2. Clearly, the mean
streamwise velocity results are close to the expected log-law profile (straight dashed
line). In the near-wall region, corrected simulations yield < ũ > closer to the
log-law, compared with baseline simulations. Table 1 presents relative errors of
< ũ > at a height of z/H = 0.1. All simulations yield small discrepancies with
the log-law (relative errors within 5%). Baseline simulations have a tendency of
increasing accuracy with increasing resolution. For the 963 case and the 1283 case,
corrected simulations yield slightly larger error magnitudes. This may be caused
by the combined effects of the bottom boundary condition and the SGS modeling.
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Figure 2: Normalized mean streamwise velocity profile in a semi-logarithmic scale:
(a) results from low-resolution corrected simulations; (b) results from high-resolution
corrected simulations. The dashed line corresponds to the classical log-law with
κ = 0.4.

However, corrected simulations consistently show smaller discrepancies and weaker
resolution dependence.

Table 1: Relative error of the mean streamwise velocity at a height of z/H = 0.1.

E = (ulog− < ũ >) /ulog, where ulog = u∗
κ

ln
(

z
z0

)
.

243 LES 323 LES 483 LES 643 LES 963 LES 1283 LES
E from baseline simulations 4.7% 4.2% 3.6% 2.7% 1.1% 0.24%
E from corrected simulations 0.84% 0.50% 0.21% −1.0% −2.1% −2.1%

To more rigorously evaluate model performance, one may examine the values of
the mean nondimensional vertical gradient of the streamwise velocity Φ = κz

u∗
d <ũ>

d z

as a function of vertical position. Theoretically, this nondimensional vertical gradi-
ent is unity in the surface layer. In 1994, Andrén et al. [1] performed an extensive
comparison of various LES codes using the standard Smagorinsky model [37] with
wall damping and other eddy-viscosity models. In the surface layer, from z/H = 0
to z/H = 0.2, their values of Φ were mostly larger than 1.2, and some simulations
yielded Φ ≈ 2. Similar overshoots in Φ reaching over 1.5 for the standard Smagorin-
sky model have been observed in many studies [38, 39, 40, 4]. It appears that the
standard Smagorinsky model is too dissipative, removing too much kinetic energy
from the resolved field and generating a near-linear profile in the surface layer, which
bears a large value of Φ. The values of Φ resulting from the present simulations are
presented in figure 3 and figure 4. The modulated gradient model yields a value of Φ
that remains close to 1 in the surface layer, indicative of the expected logarithmic ve-
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Figure 3: Nondimensional vertical gradient of the mean streamwise velocity (Φ =
κz
u∗

d <ũ>
d z

) versus normalized height above the wall: (a) results from low-resolution
baseline simulations; (b) results from high-resolution baseline simulations. The
dashed line corresponds to the classical log-law with κ = 0.4. The left corner plot is
a zoomed view of the near-wall region and it has a log scale in the vertical direction.

0.2

0.4

0.6

0.0 0.4 0.8 1.2 1.6 2.0

0.01

0.1

0.0 0.4 0.8 1.2 1.6 2.0
 243 LES
 323 LES
 483 LES

 

 

z/
H

 

 z/
H

0.2

0.4

0.6

0.0 0.4 0.8 1.2 1.6 2.0

0.01

0.1

0.0 0.4 0.8 1.2 1.6 2.0
 643 LES
 963 LES
 1283 LES

 

 

z/
H

 

 z/
H

(a) (b)

Figure 4: Nondimensional vertical gradient of the mean streamwise velocity (Φ =
κz
u∗

d <ũ>
d z

) versus normalized height above the wall: (a) results from low-resolution
corrected simulations; (b) results from high-resolution corrected simulations. The
dashed line corresponds to the classical log-law with κ = 0.4. The left corner plot is
a zoomed view of the near-wall region and it has a log scale in the vertical direction.

locity profile. It should be noted that using the baseline model, the nondimensional
vertical gradient is slightly underestimated for the lowest 2-3 grid points (with the
lowest value of about 0.85), which leads to the slight underestimation of the average
velocity as shown in figure 1 and table 1. The corrected model appears to remove
this bias.

Next, figure 5 shows the vertical distribution of the averaged value of the cor-
rection coefficient computed using equation (4) for different resolution simulations.
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Figure 5: Vertical distribution of the time-averaged correction coefficient obtained
from three corrected simulations. The height is normalized with the filer size ∆̃.

The value of C is larger than 1 due to the fact that the denominator in equation (4)
is always smaller than the numerator, since all negative values of the SGS energy
transfer rate have been clipped to zero. This correction compensates for the over-
estimation of the SGS energy transfer rate associated with the use of the clipping
procedure. C has values that increase with height and range from about 1.2 near the
surface to 1.6 away from the surface. Note that the collapse of all curves indicates
that the value of C is dependent on z/∆̃ only.

4.2 Energy spectra

It is important to test the ability of LES to accurately reproduce the main spectral
characteristics of the resolved field. Spectra of velocity fields in turbulent bound-
ary layers are known to exhibit three distinct spectral scaling regions: the energy-
production range, the inertial subrange and the dissipation range. In the case of
LES of high-Reynolds-number boundary layers, the dissipation range is not resolved
and, therefore, it will not be considered here. It is well known [41, 42, 43] that the
energy spectra of three wind components satisfy the Kolmogorov −5/3 power-law
in the inertial subrange, i.e., the range of relatively small, isotropic scales that sat-
isfy k1z & 1, where k1 is the streamwise wavenumber. Also, laboratory and field
measurements [41, 43, 44] of boundary-layer turbulence show that in the energy-
production range, corresponding to scales larger than the distance to the surface
(k1z . 1) and smaller than the integral scale, spectra of the streamwise velocity
often follow a −1 power-law, i.e., they are proportional to k−1

1 .
Previous LES studies have examined model performance regarding energy spec-

tra, and limitations have been found for traditional SGS models. The spectra of
the streamwise velocity obtained using the standard Smagorinsky model decay sig-
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Figure 6: Averaged nondimensional 1-D spectra of the streamwise velocity obtained
from (a) the 643 baseline simulation; (b) the 643 corrected simulation; (c) the 1283

baseline simulation; and (d) the 1283 corrected simulation. Numbers in plots denote
normalized heights (z/H). The slopes of −1 and −5/3 are also shown.

nificantly faster (some simulations yield spectrum slopes as large as −7) than the
expected −1 power-law in the near-wall region [1, 40, 3]. Within the constraints
of the Smagorinsky model, this type of spectrum means that the model dissipates
kinetic energy at an excessive rate. The resulting spectra obtained using the dy-
namic Smagorinsky model, on the other hand, decay too slowly (the spectrum slope
is close to −0.5) in the near-wall region [3]. This is likely to be due to the fact
that the dynamic procedure samples scales near and beyond the local integral scale,
at which the assumption of scale invariance of the coefficient (on which the model
relies) breaks down, leading to an underestimation of the Smagorinsky coefficient
near the surface [3]. The lower coefficient then yields lower energy dissipation rate
and pile-up of energy at high wavenumbers. It is also found that, in the inertial sub-
range, the dynamic Smagorinsky model may yield a streamwise velocity spectrum
slope shallower (close to −0.8) than −5/3 [7].

Figure 6 and figure 7 show the normalized spectra of the simulated streamwise
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Figure 7: Averaged nondimensional 1-D spectra of the vertical velocity obtained
from (a) the 643 baseline simulation; (b) the 643 corrected simulation; (c) the 1283

baseline simulation; and (d) the 1283 corrected simulation. Numbers in plots denote
normalized heights (z/H). The slope of −5/3 is also shown.

and vertical velocity, computed at different heights. Results are presented for the
two model versions (with the baseline simulation results on the left panels, and
with the corrected simulation results on the right panels) as well as two different
resolutions (the 643 resolution results on the top panels, and the 1283 resolution
results on the bottom panels). Spectra are calculated from one-dimensional Fourier
transforms of the velocity component and then are averaged both horizontally and in
time. Streamwise wavenumber is normalized by the height, and spectrum magnitude
is normalized by u2

∗z. It should be noted that the spectra of the spanwise velocity
(not shown here) are similar to the spectra of the streamwise velocity. The baseline
model leads to spectra that are consistently too steep at large wavenumbers. This
is consistent with the feature that the baseline model overestimates the dissipation
rate. This excessive dissipation is more evident in the coarser resolution (643-nodes
baseline simulation). Results are clearly improved for both resolutions when the
correction given by equation (4) is used. In that case, in the inertial subrange (k1z &
1) all the normalized spectra show a better collapse and are in good agreement with
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the−5/3 power-law. The improvement in the dissipation characteristics of the model
due to the correction can be explained considering that the relatively larger values of
C (see figure 5) provided by the correction lead to relatively smaller values of τij and,
consequently, SGS energy transfer rates. For scales larger than the distance to the
surface (k1z . 1), the slope of the spectra of the streamwise velocity is slightly lower
than −1 (close to −0.7). The spectra of the vertical velocity differ from the spectra
of the streamwise velocity. As shown in figure 7, there is no clear −1 power-law
region; instead the spectra are flat in the near-wall region. This finding is consistent
with the expected distribution supported by theoretical [45, 41] and experimental
studies [41, 43].

4.3 Flow visualization

A few remarks must be made regarding the ability of LES calculations to capture
the structure of turbulence. We define three components of the resolved velocity
fluctuation as ũ′i = ũi− < ũi >. Coherent streamwise elongated ‘streaks’ of ũ′ are
ubiquitous in turbulent boundary flows and have been repeatedly observed in a vari-
ety of contexts [46, 47, 48]. Figures 8(a, c, e) present instantaneous contours of ũ′/u∗
on a horizontal plane obtained from the 643 baseline simulation, the 1283 baseline
simulation and the 1283 corrected simulation respectively. Elongated structures of
high-speed and low-speed ũ′ are evident. The contours of ũ′/u∗ are more diffused
in the 643 baseline simulation. As expected, the 1283 baseline simulation shows
finer structures. This observation is consistent with other LES studies of turbulent
boundary flows [7, 40]. Low-speed streak-like structure is closely related to vortical
motions and corresponds to streamwise momentum being transported away from
the wall. Figures 8(c, e) show that the low-speed regions appear more concentrated
and elongated (often spanning the entire streamwise domain in our simulations)
than the high-speed regions. This finding is consistent with LES and DNS results
[49, 12, 48, 50] and recent experimental measurements [47, 48]. Moreover, figures
8(c ,e) reveal a clear difference between the structure of the streaks simulated with
both models under consideration. Using the correction coefficient yields simulated
streamwise velocity fields that have more small-scale structure. This is consistent
with the fact that the baseline model dissipates too much energy (as pointed in the
energy spectra subsection), thus overly smoothing the velocity fields at the smallest
resolved scales.

Figures 8(b, d, f) present instantaneous contours of w̃′/u∗ on a vertical plane
obtained from the 643 baseline simulation, the 1283 baseline simulation and the 1283

corrected simulation respectively. The strong vertical coherence of the updrafts and
downdrafts is evident. Small plumes originate near the ground, and some of them
are suppressed by strong downdrafts, while others merge with their neighbors to
form larger stronger updrafts. The updraft regions are stronger and more spatially
coherent than the downdraft regions, and also the near-wall low-speed streaks (as
shown in Fig. 8(a, c, e) ) are kinematically tied to the presence of strong updrafts.
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Figure 8: Instantaneous velocity fluctuation contours: (a, c, e) ũ′/u∗ at a height of
z/H = 0.1 obtained from the 643 baseline simulation, the 1283 baseline simulation and
the 1283 corrected simulation; and (b, d, f) w̃′/u∗ in the layer of x/Lx = 0.5 obtained
from the 643 baseline simulation, the 1283 baseline simulation and the 1283 corrected
simulation. Each plot adopts a 25 contour-level linear scale color-map, which uses blue to
represent ũ′/u∗ = −6 and w̃′/u∗ = −3, and uses red to represent ũ′/u∗ = 6 and w̃′/u∗ = 3.
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These turbulent structures are consistent with results in other studies [49, 12]. Like
in the case of the horizontal velocity fields, using the correction coefficient yields
simulated vertical velocity fields that have more small-scale structure.

4.4 PDF of velocity fluctuations

Based on the central limit theorem, probability density functions (PDF) for turbu-
lent velocities are near-Gaussian. Experimental studies [51, 52] have confirmed this
statement in turbulent boundary layer flows, particularly near the wall. Figure 9
examines the PDF of ũ′/u∗, ṽ′/u∗ and w̃′/u∗ at a height of z/H = 0.1 obtained
from simulations using the two model versions at two resolutions. To accentuate
the PDF tails, a log ordinate axis is used. PDF plots are very weakly skewed, and
the approach to Gaussian distribution is evident.
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Figure 9: Probability density functions of resolved velocity fluctuations at a height
of z/H = 0.1 obtained from ¥: the 643 corrected simulation; ©: the 643 baseline
simulation; +: the 1283 corrected simulation; and ×: the 1283 baseline simulation.
The solid lines are zero-skewness Gaussian curves.

To quantitatively examine their statistical characteristics, the skewness and flat-
ness (also referred to as ‘kurtosis’) factors are shown in figure 10 and figure 11. The
magnitude of skewness factors is generally smaller than 0.5, indicating a weakly
skewed (|S| < 1.5) probability distribution. As required by the spanwise symmetry
of the flow, the skewness of ṽ′ must be nearly zero, and current simulations demon-
strate this symmetry reasonably well as seen in figure 10(b). The skewness of ũ′,
as revealed through previous experiments [51] and LES studies [7, 12], is mostly
negative indicating a predominance of negative streamwise velocity fluctuations ac-
companying more elongated low-speed streaks as shown in figures 8(a, c, e). Also,
consistent with previous studies [51], the flatness factors of the three fluctuating
velocity components are close to the value of 3 which Gaussian distribution bears.

15



0.0

0.1

0.2

0.3

0.4

-1.0 -0.5 0.0 0.5 1.0
0.0

0.1

0.2

0.3

0.4

-1.0 -0.5 0.0 0.5 1.0
0.0

0.1

0.2

0.3

0.4

-1.0 -0.5 0.0 0.5 1.0

 S(w')

 

 

~

 

 

S(u')

Z/
H

~  S(v')

 

 

~
(a) (b) (c)

Figure 10: Vertical distribution of skewness factor of resolved velocity fluctuations
obtained from ¥: the 643 corrected simulation; ©: the 643 baseline simulation;
dash dotted line: the 1283 corrected simulation; and solid line: the 1283 baseline
simulation.
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Figure 11: Vertical distribution of flatness factor of resolved velocity fluctuations
obtained from ¥: the 643 corrected simulation; ©: the 643 baseline simulation;
dash dotted line: the 1283 corrected simulation; and solid line: the 1283 baseline
simulation.

4.5 Second-order moment statistics

Averaging (both horizontally and in time) the streamwise direction momentum equa-
tion yields ∂<ũ w̃>

∂z
+ ∂<τxz>

∂z
= −∂<p̃>

∂x
, where < ũ w̃ > is the mean resolved shear

stress and < τxz > is the mean SGS shear stress. Since the simulated flow is driven
by a constant pressure gradient, in the absence of viscous stresses, the normalized
(by u2

∗) mean total turbulent stress grows linearly from a value of −1 at the surface
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to a value of 0 at the top of the boundary layer. Because < w̃ >= 0, it is easy to
prove that < ũ w̃ > equals < ũ′ w̃′ >. Mean resolved shear stress should be negative
indicating an overall tendency that faster (ũ′ > 0) fluid parcels moving downward
(w̃′ < 0) and slower (ũ′ < 0) fluid parcels moving upward (w̃′ > 0). Figure 12 shows
the vertical distribution of the mean total and partial (resolved and subgrid-scale)
values of the normalized shear stress obtained from the 1283 baseline simulation
and the normalized SGS stresses obtained from two coarser grids (643 and 963). As
expected, the coarser resolution simulations yield SGS stresses that are larger in
magnitude than the higher resolution counterparts. The distribution of total tur-
bulent stress is indeed consistent with the expected linear behavior. The result also
serves as a confirmation of stationarity and momentum conservation of the scheme.
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Figure 12: Vertical distribution of normalized (by u2
∗) total and partial (subgrid-

scale and resolved) shear stresses. Lines represent results obtained from the 1283

baseline simulation, respectively, solid line: total stress; dashed line: SGS stress; and
dash dotted line: resolved stress. Also shows ¥: SGS stress from the 963 baseline
simulation; ©: SGS stress from the 643 baseline simulation.

Figure 13 shows the vertical distribution of the variance of the resolved veloci-
ties. The current simulation results are in good agreement with the scale-dependent
dynamic model results in Porté-Agel et al.’s past work [3], which used the same
numerical setup. Also, the agreement between the results from different resolution
simulations is good for the two horizontal velocity components. Differences can be
observed between vertical velocity variances obtained from different resolution sim-
ulations: higher resolution simulations yield higher maximum < w̃′w̃′ > values, and
lower elevation where the maximum < w̃′w̃′ > occurs. This resolution dependence is
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Figure 13: Vertical distribution of normalized variances of the resolved velocities
obtained from solid line: 1283 baseline simulation; ¥: 963 baseline simulation; and
©: 643 baseline simulation.

due to the fact that, near the surface, the SGS vertical velocity variance represents a
relatively large fraction of the total vertical velocity variance as seen in figure 7. As
a result, an increase in resolution leads to a smaller SGS vertical velocity variance
and, in turn, a larger resolved vertical velocity variance. This contrasts with the
behavior of the horizontal velocity variance, which is dominated by larger (resolved
in LES) horizontal eddy scales (see also figure 6) and, consequently, shows little
dependence on resolution.

5 Summary and conclusions

We have proposed a new nonlinear SGS model and tested it in simulations of a
neutrally stratified ABL turbulence. The model uses the SGS kinetic energy to
compute the magnitude of the SGS stress tensor, and the gradient tensor (which
can be derived by Taylor expansion of the SGS stress) to determine its structure, i.e,
the relative magnitude of the different tensor components. Different from standard
gradient models, the formulation of the new model is derived from a class of one-
equation models, which was introduced recently [24, 11]. Here, we use the local
equilibrium hypothesis to estimate the SGS kinetic energy, and adopt a clipping
procedure to avoid local kinetic energy transfer from unresolved to resolved scales.
This, together with the fact that the model only uses local velocity gradients, and it
does not require an extra filtering, make this model computationally efficient. Two
approaches are considered to specify the model coefficient: a constant value of 1,
and a simple correction to account for the effects of the clipping procedure on the
SGS production rate.

The proposed model is examined in simulations of the well-established case of
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a neutral ABL flow. These simulations are the first successful calculations of ABL
turbulence using an unmixed gradient scheme. In summary, the basic conclusions
from this paper are: (i) the standard gradient model can be modified to achieve
stable and robust simulations; (ii) the local equilibrium hypothesis together with
clipping procedure may provide an estimation of the SGS kinetic energy for the
model; (iii) application to a neutral ABL flow shows the model is capable to achieve
the expected logarithmic velocity profile in the near-wall region, the correct spectral
scaling, as well as some other important statistical characteristics of boundary layer
turbulence.

It is well known that LES of the ABL is rather sensitive to the SGS model in
the near-wall region. This is due to the fact that the near-surface flow is highly
anisotropic and the SGS motions account for a large fraction of the turbulence, as
shown by the energy spectra of the different velocity components (Fig. 6 and 7).
The proposed model shows a significant improvement with respect to other simple
models, such as the standard Smagorinsky model, which is known to overestimate
the nondimensional vertical gradient of the streamwise velocity near the surface
[38, 1, 39, 40, 4] and it yields energy spectra that are too steep due to its overly
dissipative nature [1, 40, 3].

The model is still lacking in that, in its present formulation, it needs a-priori
knowledge to determine the model coefficient. It is important to note that the
selected constant value is based on theoretical arguments, which are strictly only
valid in the inertial subrange of high-Reynolds-number turbulence. However, the
filter size usually falls outside of the inertial subrange in the near-wall region of ABL.
Possible future modifications of the model include the development and testing of
dynamic and scale-dependent dynamic procedures to optimize the value of the model
coefficient using information of the resolved velocity field. Moreover, alternative
ways of computing the SGS kinetic energy could be considered, including the solution
of an additional transportation equation. A-priori studies using field data could also
be used to test the new closure (equation (1)). Future work should also extend the
implementation of a similar base model to SGS scalar fluxes.
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