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Abstract

As a simple alternative to the standard eddy-diffusivity closure, a nonlinear subgrid-

scale (SGS) flux model is introduced and implemented in simulations of a neutral at-

mospheric boundary layer and a stable atmospheric boundary layer. The new model

computes the structure of the SGS flux (relative magnitude of the vector components)

based on the normalized gradient vector, which is derived from the Taylor expansion of the

exact SGS flux. The SGS magnitude is computed as the product of a SGS velocity scale

and a SGS scalar concentration scale, which are estimated based on the local-equilibrium

hypothesis. To resolve the instability issue of the original gradient model and ensure nu-

merical stability, we adopt a clipping procedure to avoid local negative SGS dissipation

rate of the scalar variance. The model formulation using constant coefficients is assessed

through a systematic comparison with well-established theoretical predictions and refer-

ence results of various flow statistics. Simulation results obtained with the use of this new

model show good agreement with the reference results and an evident improvement over

results obtained using traditional eddy-diffusivity models. For instance, the new model

can deliver the expected surface-layer similarity scalar profile and power-law scaling of

the power spectrum of scalar fluctuation.
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1 Introduction

Large-eddy simulation (LES) is a useful tool for the study of high-Reynolds-number turbulent

flows. The physical basis for LES is the separation of the flow into resolved and subgrid-

scale (SGS) motions. This is achieved through the use of a three-dimensional spatial filtering

operation, denoted here as a tilde (˜). The resolved (filtered) motions contain most of the

energy, and one can compute them numerically by solving the filtered governing equations,

while the effects of the less energetic SGS motions are parameterized. This study is devoted

to the extension of a recently introduced SGS stress model (Lu and Porté-Agel, 2010) dealing

with the LES of turbulent atmospheric boundary layer (ABL) flows to the case where a scalar

is introduced into the flow. The closure problem is restricted to the spatially filtered scalar

transport equation, and effects of the SGS motions are represented by the divergence of the

SGS flux vector. The SGS flux vector is defined as

qi = ũiθ − ũiθ̃ , (1)

and it must be closed in terms of the resolved velocity field ũi and the resolved scalar field θ̃.

Numerous SGS models have been proposed since the introduction of the first SGS stress

model by Smagorinsky (1963). The Smagorinsky model belongs to the family of eddy-viscosity

and eddy-diffusivity models. They all rest on two important assumptions: (i) the effects of the

SGS motions on the resolved motions are essentially energetic actions, so that the modeling fo-

cuses primarily on the balance of the energy transfers between the two scale ranges, and (ii) the

energy-transfer mechanism is analogous to the molecular mechanism represented by diffusion.

The local-equilibrium hypothesis is often adopted to determine the model coefficients. In the

context of ABL flows, the early eddy-viscosity/diffusivity models have revealed that the mean

wind and temperature profiles in the surface layer differ from the Monin-Obukhov similarity

forms (e.g., Businger et al., 1971; Stull, 1988). Specifically, the nondimensional vertical gradi-

ents of velocity and temperature could be overestimated by more than 20% in the surface layer.

To try and resolve this issue, researchers have introduced quite a few modifications for different

aspects of ABL flows. For instance, Mason (1989) and Mason and Thomson (1992) used an

ad-hoc expression to provide proper SGS mixing lengths; Sullivan et al. (1994) proposed a two-

part eddy-viscosity/diffusivity model that includes contributions from the mean flow; Kosović

(1997) proposed a nonlinear modification that allows backward energy cascade; and Porté-Agel

et al. (2000) and Porté-Agel (2004) used a scale-dependent dynamic approach to compute the

model coefficients dynamically, while allowing for scale-dependence of the coefficients.

The variety of SGS models for simulating ABL flows arises not only because the theoretical

justifications are arguable but also because LES solutions are sensitive to the given type of

SGS models, especially in the surface layer. In contrast to eddy-viscosity/diffusivity models,

2



gradient models are derived from the Taylor series expansions of the SGS terms that appear in

the filtered conservation equations (Clark et al., 1979), do not locally assume the same eddy

viscosity/diffusivity for all directions, and make no use of prior knowledge of the interactions

between resolved motions and SGS motions. At a-priori level, gradient models generally predict

the structure of the exact SGS terms much more accurately than eddy-viscosity/diffusivity

models (and therefore are better able to capture anisotropic effects and disequilibrium, e.g.,

Liu et al., 1994; Higgins et al., 2003; Porté-Agel et al., 2001; Lu et al., 2007). These features

make gradient models attractive. However, when implemented in LESs, they are not able to

yield the correct levels of the SGS kinetic energy production (energy transfer between resolved

and SGS scales), and as a result, simulations often become numerically unstable as reported in

a variety of contexts (e.g., Sagaut, 2006).

Different schemes have been introduced for resolving this insufficient-dissipation issue. Bar-

dina et al. (1980) proposed a mixed procedure; and later on, Chow et al. (2005) showed that

this procedure delivers good agreement with similarity theory in LES of neutral ABL flows.

Vreman et al. (1996, 1997) and Lu et al. (2008) mixed gradient terms with O(∆̃2) and O(∆̃4)

eddy-viscosities to simulate different types of turbulent flows, and showed that mixed gradient

models are capable of capturing disequilibrium and anisotropy effects. Liu et al. (1994) revisited

this energy cascade issue and recommended another meaningful choice, a clipping procedure, to

control the amplitude of backward cascade induced by the model. Inconveniently, Vreman et al.

(1997) have reported that their coupling of the gradient model with the clipping procedure still

does not provide sufficient SGS dissipation in simulations of mixing layer flows.

A recent effort (Lu and Porté-Agel, 2010) adopted a new SGS model formulation for the

LES of ABL flows that builds on the work of Pomraning and Rutland (2002) and Lu et al.

(2007, 2008). This model for the SGS stress tensor, τij = ũiuj − ũiũj, can be written as

τij = 2ksgs

(
G̃ij

G̃kk

)
, (2)

where ksgs =
1
2
τii is the SGS kinetic energy, and G̃ij is the gradient tensor, which is defined as

G̃ij = ∆̃2

12

(
∂ũi

∂xk

∂ũj

∂xk

)
for a three-dimensional isotropic filter of size ∆̃ (e.g., Sagaut, 2006), and

G̃ij =
∆̃2

x

12
∂ũi

∂x

∂ũj

∂x
+

∆̃2
y

12
∂ũi

∂y

∂ũj

∂y
+ ∆̃2

z

12
∂ũi

∂z

∂ũj

∂z
for anisotropic filters/grids (for which ∆̃x, ∆̃y and ∆̃z are

not equal) such as the ones considered in this study. Through the formulation, the structure

(the relative magnitude of the different components) of the SGS stress tensor is modeled by

the normalized gradient tensor, and the magnitude of the SGS stress tensor is modeled by an

estimation of ksgs. The nonlinear model formulation has been shown to improve the modeling

of energy transfers at intermediate scales and deliver better flow statistics, such as energy

decay rate and flow structure (Lu et al., 2007, 2008; Rutland, 2011). Lu and Porté-Agel (2010)
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adopted the local-equilibrium hypothesis, which assumes a balance between the SGS kinetic

energy production P (P = −τij S̃ij, where S̃ij =
1
2

(
∂ũi

∂xj
+

∂ũj

∂xi

)
is the resolved strain rate tensor)

and dissipation rate (classically modeled as ε = Cε
k
3/2
sgs

∆̃
). A clipping procedure is used to assure

that the SGS dissipation rate is non-negative, and thus

ksgs = H (P )
4∆̃2

C2
ε

(
− G̃ij

G̃kk

S̃ij

)2

, (3)

where H(x) is the Heaviside step function defined as H(x) = 0 if x < 0 and H(x) = 1 if

x ≥ 0. The model has been assessed through a systematic comparison with well-established

empirical formulations and theoretical predictions of a variety of flow statistics in a neutral

ABL. It is capable of reproducing the expected log-law mean velocity profile and power-law

energy spectra, and simulations yield streaky structures and near-Gaussian probability density

functions of velocity in the surface layer. A further assessment study showed that, in decaying

isotropic turbulences, the clipping is applied less than 30% of time and produces no strong

energy jumps; also the model is capable of achieving reasonable spectra, as well as other key

statistical characteristics (Lu, 2011). After the encouraging performance of this simple SGS

stress model, an extension of this approach to modeling the SGS scalar flux appears interesting.

The scalar problem is a key component of many turbulent flows, and of ABL flows in

particular. However, the extension of SGS stress models to scalar flux is not obvious. In this

paper, we focus on the development of a simple alternative to the standard eddy-diffusivity

closure, and propose (in section 2) a computationally inexpensive modulated gradient model

that uses the local-equilibrium hypothesis to estimate the SGS velocity scale and the SGS

scalar concentration scale. The model features a clipping procedure for avoidance of negative

dissipation. We test the performance of the modulated gradient model in high-Reynolds-number

simulations of a neutrally stratified ABL case and a stably stratified ABL case. Section 3

describes the governing equations and common numerical setup. Section 4 and section 5 present

the LES results. Section 6 summarizes the findings.

2 The modulated gradient model

Our proposed SGS flux vector model is written as

qi = |q|
(
G̃θ,i

|G̃θ|

)
. (4)

This formulation separates the modeling into two elements: the normalized gradient vector

serves to model the structure (relative magnitude in each direction) of the SGS flux vector;
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and a separate model is needed for the magnitude of the SGS flux. To account for the grid

anisotropy, the gradient vector is computed as G̃θ,i =
∆̃2

x

12
∂ũi

∂x
∂θ̃
∂x

+
∆̃2

y

12
∂ũi

∂y
∂θ̃
∂y

+ ∆̃2
z

12
∂ũi

∂z
∂θ̃
∂z
, and we

compute its magnitude with the Euclidean norm |G̃θ| =
√

G̃2
θ,1 + G̃2

θ,2 + G̃2
θ,3. To close this

model, we need to evaluate the magnitude of the SGS flux vector, |q|.
Even though a previous approach (Chumakov and Rutland, 2005) places much emphasis

on the scalar field, it is desirable, owing to the definition of the SGS flux vector as shown in

equation (1), that the SGS flux magnitude encompasses both the velocity and the scalar fields.

Therefore here we propose to model the flux magnitude as the multiplication of an SGS velocity

scale and an SGS scalar concentration scale

|q| = usgsθsgs . (5)

It is straightforward to assume that the SGS velocity scale is proportional to the square root of

the SGS kinetic energy, usgs = C
√
ksgs. Further, we adopt the local-equilibrium hypothesis to

estimate the SGS scalar concentration scale. This hypothesis constitutes the basic assumption

of many SGS approaches, such as the Smagorinsky model (Smagorinsky, 1963) and many other

models (e.g., Germano et al., 1991; Moin et al., 1991; Pierce and Moin, 1998; Knaepen et al.,

2002; Lu and Porté-Agel, 2010). Especially, as the most commonly used method in engineering

and other fields, dynamic Smagorinsky-type models (e.g., Germano et al., 1991; Moin et al.,

1991) adopt this hypothesis as well as the scale-invariance assumption to determine model

coefficients as functions of space and time. Although several studies (e.g., Borue and Orszag,

1998; da Silva and Métais, 2002; Park et al., 2006; You and Moin, 2007) pointed that this

hypothesis does not hold very well locally, it does work better for the scalar than for the

velocity field (e.g., da Silva and Pereira, 2005). The hypothesis assumes a balance between the

SGS scalar variance production, Pθ = −qi
∂θ̃
∂xi

, and the SGS scalar variance dissipation rate εθ,

which is evaluated by a classical method, εθ = Cεθ
θ2sgsusgs

∆̃
. Note that various models for the SGS

scalar variance dissipation rate exist (e.g., Girimaji and Zhou, 1996; Sanders and Gökalp, 1998;

Chumakov and Rutland, 2005; Balarac et al., 2008a), but a recent study (da Silva et al., 2008)

has shown that the classical models (i.e., ε = Cε
k
3/2
sgs

∆̃
and εθ = Cεθ

θ2sgsusgs

∆̃
) give good results

in terms of topology, spatial localization, statistical behavior and spectral characteristics. A

clipping procedure ensures the dissipation rate is non-negative, thus

θsgs = H (Pθ)
∆̃

Cεθ

(
− G̃θ,i

|G̃θ|
∂θ̃

∂xi

)
. (6)

An alternative method to evaluate the SGS scalar concentration scale could be the square root

of the SGS scalar variance. We have tested several combinations of models of the SGS kinetic

energy (Knaepen et al., 2002; Yoshizawa and Horiuti, 1985; Yoshizawa, 1986; You and Moin,
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2007) and the SGS scalar variance (Pierce and Moin, 1998; Chumakov and Rutland, 2005;

Balarac et al., 2008b), and found many of them do not provide sufficient dissipation. It should

also be mentioned that these combinations are much more sophisticated and computationally

expensive than the proposed formulation. In this study, we focus on the development of a

simple alternative to the standard eddy-diffusivity closure, and thus propose a computationally

inexpensive modulated gradient model that uses the local-equilibrium hypothesis to estimate

the SGS scales.

A dynamic procedure (Germano et al., 1991; Lilly, 1992) might serve to determine the model

coefficient Cεθ; but, for simplicity, here we adopt assumptions to justify a simple method for

determining a constant value. It has been assumed by Jiménez et al. (2001), in a study of the

SGS scalar variance dissipation, that the SGS scalar mixing time is proportional to the SGS

turbulent characteristic time. Tests have shown that a satisfactory ratio is the Schmidt number

(or the Prandtl number depending on the physical significance of the scalar field), in terms of,
θ2sgs
εθ

: ksgs
ε

= Sc. Then, the coefficient can be derived as Cεθ =
1
Sc

Cε

C
, and the magnitude of the

SGS flux can be expressed as

|q| = H (Pθ)H (P )
1

Sc

2∆̃2

C2
εθ

(
− G̃θ,i

|G̃θ|
∂θ̃

∂xi

)(
− G̃ij

G̃kk

S̃ij

)
. (7)

When adopting (as this study has done) Sc = 0.71 (the Prandtl number of air near 20◦C),

Cε = 1 (e.g., Yoshizawa and Horiuti, 1985; Kim and Menon, 1995), and C =
√
2 (with usgs =√

ũiui − ũiũi =
√

2 ksgs), one obtains Cεθ = 1.0. In this paper, the combination of the SGS

stress model described in equations (2) and (3) and this SGS flux vector model is abbreviated

as “MGM.”

3 Numerical simulations

Previous studies (e.g., Andren et al., 1994; Sullivan et al., 1994) have stated that the discrepancy

between simulation results and surface-layer similarity theory becomes more evident as surface

buoyancy forcing decreases. In this regard, one should expect a larger impact of the SGS

formulation in neutral and stable cases than in convective (unstable) cases. The current paper

focuses on two cases: one involves neutral stability conditions, and another involves stably

stratified conditions. Also, because the simulated flows bear high Reynolds numbers (commonly

O(108) or larger), no near-wall viscous processes are resolved, and the viscous terms (∼ 1/1010

of the SGS terms at the resolution of 1283) are neglected in the governing equations.

We use a modified LES code that has been used for previous studies (e.g., Albertson and

Parlange, 1999; Porté-Agel et al., 2000; Porté-Agel, 2004; Stoll and Porté-Agel, 2006a,b, 2008;
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Lu and Porté-Agel, 2010). The code solves the filtered equations of continuity, conservation of

momentum and scalar transport

∂ũi

∂xi

= 0 , (8)

∂ũi

∂t
+

∂ũiũj

∂xj

= − ∂p̃

∂xi

− ∂τij
∂xj

+ f̃i , (9)

∂θ̃

∂t
+ ũi

∂θ̃

∂xi

= − ∂qi
∂xi

, (10)

where (ũ1, ũ2, ũ3) = (ũ, ṽ, w̃) are the components of the resolved velocity field, θ̃ is the resolved

scalar, p̃ is the effective pressure, and f̃i is a forcing term. In the stable case, the buoyancy

force and the Coriolis force would be included as f̃i = δi3g
θ̃−〈θ̃〉

H

θ0
+ fcεij3ũj, where θ̃ represents

the resolved potential temperature, θ0 is the reference temperature, 〈·〉H denotes a horizontal

average, g is the gravitational acceleration, fc is the Coriolis parameter, δij is the Kronecker

delta, and εijk is the alternating unit tensor.

The simulated ABLs are horizontally homogeneous. The horizontal directions are discretized

pseudo-spectrally, and vertical derivatives are approximated with second-order central differ-

ences. The height of the computational domain is H , and the horizontal dimensions are Lx

and Ly. The domain is divided into Nx, Ny, and Nz uniformly spaced grid points. The

grid planes are staggered in the vertical direction with the first vertical velocity plane at a

distance ∆z = H
Nz−1

from the surface, and the first horizontal velocity plane ∆z
2

from the

surface. At the bottom, the instantaneous wall stresses are computed through the applica-

tion of the Monin-Obukhov similarity theory (e.g., Porté-Agel et al., 2000; Porté-Agel, 2004):

τi3|w = −u2
∗

ũi

U(z)
= −

(
U(z)κ

ln (z/z0)−ΨM

)2
ũi

U(z)
, where κ is the von Kármán constant, u∗ is the friction

velocity, z0 is the roughness length, ΨM is the stability correction for momentum, and U(z)

is the plane averaged resolved horizontal velocity. We compute the filter size using a common

formulation ∆̃ = 3
√
∆x∆y∆z, where ∆x = Lx

Nx
and ∆y = Ly

Ny
. The corresponding aliasing

errors are corrected in the nonlinear terms according to the 3/2 rule (e.g., Canuto et al., 1988).

The time advancement is carried out using a second-order-accurate Adams-Bashforth scheme

(e.g., Canuto et al., 1988).

4 Neutral atmospheric boundary layer

The numerical setup is classical and has been used for previous model assessment studies

(e.g., Porté-Agel et al., 2000; Porté-Agel, 2004; Lu and Porté-Agel, 2010). The height of the

computational domain is H = 1000 [m], and the horizontal dimensions of the simulated volume

are Lx = Ly = 2πH . We carried out simulations with resolutions of Nx×Ny×Nz = 32×32×32,
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48× 48× 48, 64× 64× 64, 96× 96× 96, and 128× 128× 128. The simulated flow is driven by

a constant pressure gradient −u2
∗
/H in the x-direction. We take the setup of u∗ = 0.45 [m/s]

and z0 = 0.1 [m], which is similar to the setup in some previous studies (e.g., Andren et al.,

1994; Porté-Agel et al., 2000; Lu and Porté-Agel, 2010). The upper boundary conditions are

∂ũ/∂z = 0, ∂ṽ/∂z = 0, w̃ = 0 and ∂θ̃/∂z = 0. At the bottom, the neutral stability results in

ΨM = 0. A passive scalar field, similar to the one simulated in previous studies (e.g., Andren

et al., 1994; Kong et al., 2000; Porté-Agel, 2004), is introduced into the simulations by imposing

a constant downward surface flux q3|w = −u∗θ∗, and we employ θ∗ = 0.9 [K].

Considering that the main novelty of the proposed model comes from the fact that it does

not use the eddy-viscosity/diffusivity approach, for comparison, here we also present results ob-

tained using an eddy-viscosity/diffusivity approach of similar level of complexity (zero-equation,

non-dynamic) and computational cost. The eddy-viscosity/diffusivity approach in LES consists

of computing the SGS stress’ deviatoric part and the SGS flux as: τij − 1
3
δijτkk = −2νtS̃ij, and

qi = − νt
Scsgs

∂θ̃
∂xi

, where νt is the SGS eddy viscosity and Scsgs is the SGS Schmidt number.

Smagorinsky (1963) proposed the first SGS eddy-viscosity model; in particular, the eddy vis-

cosity is given by νt =
(
Cs∆̃

)2
|S̃|, where |S̃| =

√
2S̃ijS̃ij is the strain rate and Cs is the

Smagorinsky coefficient. In isotropic turbulence, if a cut-off filter is used in the inertial sub-

range and the filter scale ∆̃ is equal to the grid size, then Cs ≈ 0.17 and Scsgs ≈ 0.5 (Lilly, 1967;

Antonopoulos-Domis, 1981). However, flow anisotropy, particularly the presence of a strong

mean shear near the surface in high-Reynolds-number ABLs, makes the optimum values of

those coefficients depart from their isotropic counterparts (e.g., Porté-Agel et al., 2001; Kleissl

et al., 2003; Bou-Zeid et al., 2008). A common practice is to specify the coefficients in an ad-hoc

fashion. The ad-hoc damping function proposed by Mason and Thomson (1992) can be rewrit-

ten (Porté-Agel et al., 2000) as: Cs =

(
C−n

0 +
(
κ
(

z

∆̃
+ z0

∆̃

))
−n
)

−1/n

, where n is an adjustable

parameter, and studies (e.g., Mason and Thomson, 1992; Andren et al., 1994; Porté-Agel et al.,

2000) have reported that this formulation with values of C0 ranging from 0.1 to 0.3, and n = 1,

2, or 3 can deliver a more realistic logarithmic velocity profile in the surface layer than does the

standard Smagorinsky model using a constant coefficient. Studies (e.g., Mason, 1989; Mason

and Thomson, 1992; Andren et al., 1994) have found the range of Scsgs is from 0.33 to 0.7.

In line with the study by Porté-Agel et al. (2000), we adopt the damping coefficients for the

model with C0 = 0.17 and n = 1 (this modified Smagorinsky model is abbreviated as “MSM”),

and adopt the two constant values of Scsgs = 0.7 (Mason and Thomson, 1992; Andren et al.,

1994), and Scsgs = 0.5 (Mason, 1989).

We have collected mean and turbulent statistics after achieving statistically steady states.

In the presentation, we denote the horizontal and time average as < · >, and the fluctuation

of an arbitrary resolved variable f̃ as f̃ ′ = f̃− < f̃ >; and on certain occasions, we take the
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simulations of 643-node and 1283-node as base cases to present results.

4.1 First-order measurements

A long-standing problem in the LES of ABL flows is that the mean wind and temperature

profiles differ from the similarity forms in the surface layer. In this subsection, we compare our

numerical results with the predictions from similarity theory to gain a better understanding of

the performance of the new model.
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Figure 1: Comparison of results obtained from the 643 simulations of the neutral ABL case

using the MSM and the MGM: (a) normalized mean resolved streamwise velocity profiles in a

semi-logarithmic scale; (b) nondimensional vertical gradient of the mean resolved streamwise

velocity versus the normalized height above the surface. The dashed line corresponds to the

classical log-law.

The log-law profile, which was first published by von Kármán in 1931, is a semi-empirical

relationship used to describe the vertical distribution of horizontal wind speeds above the

surface within a turbulent boundary layer. It states that the mean streamwise velocity at a

certain point in a turbulent boundary layer is proportional to the logarithm of the distance

from that point to the surface. Established later, the Monin-Obukhov similarity theory, which

includes thermal effects, has been experimentally confirmed in a number of field experiments

starting with the Kansas experiment (Businger et al., 1971), and represents one of the most

firmly established results against which new SGS models should be compared. An example of

the wind speed profile in neutral cases can be written as the well-known log-law formulation:

< ũ >= u∗

κ
ln
(

z
z0

)
. Aerodynamic roughness, z0, is necessarily non-zero because the log-law

does not apply to the viscous and roughness sublayers. The log-law is a good approximation for

the velocity profile of ABL turbulence in the surface layer, which occupies the lowest ∼ 10−15%
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of the flow in ABL. Figure 1(a) compares the mean streamwise velocity profiles obtained using

the MSM and the MGM at the resolution of 643. The results obtained using the MSM are

consistent with other studies (e.g., Porté-Agel et al., 2000); and it is clear that the MSM leads

to mean velocities larger than the ones predicted by the log-law. In the surface layer, the

MGM is more effectively able to deliver a logarithmic profile, and the departure of the wind-

speed profile from the log-law lessens as the simulation resolution increases (see also Lu and

Porté-Agel, 2010).

To more rigorously evaluate model performance, one may examine the values of the nondi-

mensional vertical gradients of the resolved streamwise velocity as a function of vertical position.

The nondimensional vertical gradient of the mean resolved streamwise velocity is defined as

ΦM =
κz

u∗

∂ < ũ >

∂z
. (11)

On the basis of experimental results and dimensional analysis (e.g., von Kármán, 1931; Businger

et al., 1971; Stull, 1988), it has been found in neutral cases that ΦM = 1 for all z in the surface

layer. In this way, the logarithmic-layer mismatch can be manifested more clearly and can help

quantitatively evaluate model performance. Figure 1(b) shows the values of the nondimensional

vertical gradient of the mean resolved streamwise velocity as a function of vertical position. In

line with other studies (e.g., Mason and Thomson, 1992; Porté-Agel et al., 2000), the MSM

yields the value of ΦM in the lowest 10% of the flow is substantially larger (maximum relative

error: ∼ 30%) than the theoretical value of 1. The MSM is still too dissipative, removes too

much kinetic energy from the resolved field, and thus allows for excessive shear in the surface

layer, which bears a large value of ΦM . Note that although the gradient is better predicted by

the MSM at higher levels (z/H > 0.15), the velocity magnitude is higher as shown in figure

1(a). Recall that the similarity profile is only applicable to the lowest ∼ 10 − 15% of the flow

in ABL. Comparatively, in the surface layer, the MGM yields a value of ΦM that remains close

to 1 (maximum relative error: ∼ 15%), indicative of the expected logarithmic velocity profile.

More details can be found in Lu and Porté-Agel (2010).

For the scalar counterpart, one may examine the values of the nondimensional vertical

gradients of the mean resolved scalar concentration as a function of vertical position. That

nondimensional scalar gradient is defined as

Φθ =
κz

θ∗

∂ < θ̃ >

∂z
. (12)

It has been well documented (e.g., Businger et al., 1971; Stull, 1988) that, in neutral cases,

Φθ = 0.74 for all z in the surface layer. The nondimensional vertical gradient of the mean

resolved scalar concentration obtained using the MSM with two constant Scsgs values, shown

in figure 2, possesses the same general features as the velocity field counterpart. Consistent
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Figure 2: Nondimensional vertical gradient of the mean resolved scalar concentration obtained

from the 643 simulations of the neutral ABL case using the MSM with two constant Scsgs

values. The dashed line corresponds to the classical log-law.
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Figure 3: Nondimensional vertical gradient of the mean resolved scalar concentration versus the

normalized height above the surface: (a) results from low-resolution simulations of the neutral

ABL case; (b) results from high-resolution simulations of the neutral ABL case. The dashed

line corresponds to the classical log-law. The right corner plot is a zoomed view of the surface

layer and has a log scale in the vertical direction.

with others (e.g., Mason and Thomson, 1992), our current study also reveals that the departure

of Φθ from the value of 0.74 remains in our simulations. Similar overshoots in Φθ have been

reported when other eddy-diffusivity approaches were in play (e.g., Sullivan et al., 1994; Porté-
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Agel, 2004). Figure 3 presents the nondimensional vertical gradient of the mean resolved

scalar concentration profile obtained from different resolution simulations using the new model.

Clearly, the MGM yields much better values of Φθ, and the results show little sensitivity to

grid resolution. We note that the 323 simulation delivers values of Φθ that are slightly closer to

the expected value. This could be due to the effect of increased numerical diffusions at coarse

resolutions. Further, the MGM slightly overestimates Φθ at the second grid point (with the

highest value being about 0.83), and adjusts it back at the third grid point. We note that

Porté-Agel (2004) has examined the combination of the dynamic eddy-viscosity model and the

dynamic eddy-diffusivity model (e.g., Germano et al., 1991; Moin et al., 1991), and it yields a

value of Φθ that is quite small (∼ 0.6) near the ground, and increases sharply (to ∼ 0.9) in the

surface layer.

4.2 Power spectra

Power spectrum of scalar fields exhibits the inertial subrange and the dissipation range. In

the inertial range, spectrum shows to follow the −5/3 power-law scaling (e.g., Sagaut, 2006);

particularly in a neutral ABL flow, the inertial subrange should extend for a range of relatively

small scales, k1 ? z−1, where z is the height and k1 is the streamwise wavenumber. Note

that the dissipation range is not resolved in our LESs of high-Reynolds-number turbulent flow;

therefore, this range is not considered.
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Figure 4: Averaged nondimensional 1-D spectra of the resolved scalar concentration obtained

from the 643 simulations of the neutral ABL case using the MSM with two constant Scsgs

values: (a) Scsgs = 0.5 and (b) Scsgs = 0.7. Normalized heights (z/H) increase approximately

from 0.008 to 0.5. The slope −5/3 is also shown.
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Figure 5: Averaged nondimensional 1-D spectra of the resolved scalar concentration obtained

from (a) the 643 simulation of the neutral ABL case; and (b) the 1283 simulation of the neutral

ABL case. Normalized heights (z/H) increase approximately from (a) 0.008 to 0.5 or (b) 0.004

to 0.5. The slope −5/3 is also shown.

Figure 4 shows the power spectra of the resolved scalar concentration obtained from the 643

simulations using the MSM with two constant Scsgs values. The spectra are calculated from

one-dimensional Fourier transforms that are then averaged in the spanwise direction and also

in time. In order to check for a possible collapse of the curves in the inertial subrange, they

are normalized by θ2
∗
z, and are plotted against k1z. For relatively small scales (k1z ? 1), at

which the −5/3 power-law scaling arguments are expected to hold, the spectra show a good

collapse. In the surface layer, where most of the resolved scales fall outside of the inertial

subrange, the spectra drop rapidly, especially for the case with Scsgs = 0.5, indicating that

this eddy-diffusivity approach yields excessive dissipation. Moreover, Porté-Agel (2004) has

shown that near the surface, the standard dynamic closure (e.g., Germano et al., 1991; Moin

et al., 1991) yields spectra whose slopes are too flat and have an unrealistic pile-up of scalar

variance at the smallest resolves scales. Andren et al. (1994) have shown that their tested

eddy-viscosity/diffusivity models can yield excessive dissipation or noticeable power density ac-

cumulation at small scales. Results obtained using eddy-diffusivity models significantly depend

on the values of the model coefficients, especially in the surface layer. The current numerical

results also support this statement.

Figure 5 shows the nondimensional one-dimensional power spectra obtained from the simu-

lations using the new model at two resolutions (643 and 1283). The MGM is evidently capable

of achieving the −5/3 power-law scaling in the inertial subrange. In the surface layer, a com-

parison of these new-model results to the results obtained using the MSM with two Scsgs values
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reveals two major improved features: the MGM yields larger magnitudes in the power contain-

ing range (low modes), and is clearly less dissipative at the filter scales. Thus, the MGM could

better reproduce the rate of transfer of scalar variance toward the subgrid scales. Also, as

expected in LES, the increase of grid resolution will yield an extension of the resolved portion

of the inertial subrange.
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Figure 6: Averaged nondimensional 1-D spectra of the resolved scalar concentration obtained

from the 1283 simulation of the neutral ABL case using different values of Cεθ: (a) Cεθ = 0.4

and (b) Cεθ = 2.0. Normalized heights (z/H) increase approximately from 0.004 to 0.5. The

slope −5/3 is also shown.

In order to investigate the sensitivity of the simulation results to the value of the model

coefficient, Cεθ, additional simulations have been performed. The simulation results reveal that

varying Cεθ from 0.4 to 2.0 leads to a change in the nondimensional gradient, Φθ, from 0.6 to 0.9

(not shown here). Figure 6 presents the nondimensional power spectra obtained using Cεθ = 0.4

and Cεθ = 2.0. Excessive dissipation is observed for lower values of the coefficients, and higher

values yield less dissipation. Optimal performance can be achieved around Cεθ = 1.0, which is

derived on the basis of theoretical arguments (as shown in section 2) and used in this study.

4.3 Second-order statistics

Figure 7 shows the vertical distributions of the normalized total and partial (resolved and

subgrid-scale) shear stresses, and the normalized total and partial wall-normal fluxes obtained

from the 1283 simulation. It also includes the normalized SGS stresses and SGS fluxes obtained

from two coarser grids (643 and 963). As expected, the coarser resolution simulations yield

the SGS stresses and the SGS fluxes that are larger in magnitude than the higher resolution

counterparts. The simulated flow is driven by a constant pressure gradient, and a constant
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surface flux is imposed on the flow; therefore, in the absence of viscous effects, the magnitude

of the normalized total turbulent stress and the magnitude of the total turbulent flux decrease

linearly from ±1 at the surface, respectively, to 0 at the top. The similarity between the char-

acteristics of the total turbulent stress and the total turbulent flux has been reported by direct

numerical simulation (DNS) studies (e.g., Kim and Moin, 1987), indicating that productions of

scalar fluctuations also take place intermittently just as that of velocity fluctuations. Also the

near-linear feature of the total turbulent flux is in good agreement with both DNS results (e.g.,

Kim and Moin, 1987; Kong et al., 2000) in the logarithmic region, and LES results (Porté-Agel,

2004) of a neutral ABL flow. These results also serve as a confirmation of stationarity and

momentum conservation of the scheme.
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Figure 7: Vertical distributions, in the neutral ABL, of the normalized total and partial

(subgrid-scale and resolved): (a) shear stresses and (b) wall-normal fluxes.

Figure 8(a) shows the vertical distributions of the normalized resolved scalar variance ob-

tained from the 1283 simulation using the MGM, as well as the 643 simulations using the MGM

and the MSM with two constant Scsgs values. Lu and Porté-Agel (2010) have shown that

differences can be observed between resolved vertical velocity variances obtained from different

resolution simulations: an increase in resolution leads to a larger resolved vertical velocity vari-

ance. In contrast, horizontal velocity components are mostly dominated by larger (resolved in

LES) eddies, and the scalar field bears the same feature as shown in the power spectra (Fig. 5).

Consequently, the results stemming from the new model show weak grid-resolution dependence,

even if the resolved scalar variance obtained from the 1283 case is slightly larger. Similar weak

grid-resolution dependence has also been revealed previously (Porté-Agel, 2004) from results

using standard dynamic eddy-viscosity/diffusivity models and scale-dependent dynamic eddy-

viscosity/diffusivity models. Moreover, in line with the power-spectrum results (Fig. 4 and
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Figure 8: Vertical distributions, in the neutral ABL, of the normalized: (a) variance of the

resolved scalar concentration, and (b) total and partial (subgrid-scale and resolved) streamwise

fluxes.

Fig. 5), the MGM clearly yields larger scalar variance at the bottom of the boundary layer.

Figure 8(b) shows the normalized total and partial (resolved and subgrid-scale) streamwise

fluxes obtained from the 1283 simulation using the MGM and the normalized total streamwise

fluxes obtained from the 643 simulations using the MGM and the MSM with two constant

Scsgs values. Unlike the normalized wall-normal fluxes, which should be < 1, the normalized

streamwise fluxes are > 1 for most regions. Moreover, the scalar fluctuation exhibits high cor-

relations with the streamwise and vertical velocity fluctuations (the high correlation indicates

that low-speed streaks are associated with upward motions, which transport scalar concentra-

tion upwards); and the magnitudes of the correlation coefficients between the scalar and the

streamwise velocity (in a range of 0.7 ∼ 0.85, not shown here) are slightly higher than those

between the scalar and the vertical velocity (in a range of 0.6 ∼ 0.7, not shown here).

5 Stable atmospheric boundary layer

Further, we implement the MGM in a horizontally homogeneous stable boundary layer (SBL)

case. The setup is based on an LES inter-comparison study as part of the Global Energy and

Water Cycle Experiment Atmospheric Boundary Layer Study (GABLS) initiative. This LES

intercomparison case study, described in detail by Beare et al. (2006), represents a typical mod-

erately stable, quasi-equilibrium ABL, similar to those commonly observed over polar regions

and equilibrium nighttime conditions over land in mid-latitudes. In summary, the boundary

layer is driven by an imposed, uniform geostrophic wind of Ug = 8 [m/s]; the Coriolis parameter
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is set to fc = 1.39 × 10−4 [rad/s]; the initial potential temperature profile consists of a mixed

layer (with potential temperature 265 [K]) up to 100 [m] with an overlying inversion of strength

0.01 [K/m], and the surface (ground level) potential temperature is reduced at a prescribed

surface cooling rate of 0.25 [K/h]. The height of the computational domain is H = 400 [m].

As suggested by Stoll and Porté-Agel (2008), to provide a larger range of scales (better able

to capture larger buoyancy waves), the horizontal domain is twice the horizontal domain used

in Beare et al. (2006), thus Lx = Ly = 800 [m]. We carried out simulations with resolutions

of Nx × Ny × Nz = 64 × 64 × 64, 80 × 80 × 80, 96 × 96 × 96, and 128 × 128 × 128. Differ-

ent from the constant surface flux imposed in the neutral ABL case, the surface heat flux is

computed through the application of the similarity theory: q3|w =
u∗κ(θs−θ̃)

ln (z/z0)−ΨH
, where θs is the

surface (ground level) potential temperature, and ΨH is the stability correction for heat. Fol-

lowing the recommendations of the GABLS study, we adopt the roughness length z0 = 0.1 [m],

ΨM = −4.8 z
L
and ΨH = −7.8 z

L
, where L is the local Obukhov length. A Rayleigh damping

layer above 300 [m] is used following the GABLS case description. More details can be found

in Beare and MacVean (2004); Beare et al. (2006); Basu and Porté-Agel (2006); Stoll and

Porté-Agel (2008); Lu and Porté-Agel (2011).

5.1 Wind speed and potential temperature

Figure 9 shows the mean profiles of the resolved wind speed and potential temperature. Aver-

aging is performed both horizontally and over the last hour of simulation. Current simulation

results are also directly compared with the 803 simulation results performed by Basu and

Porté-Agel (2006). A low-level jet peaking appears clearly near the top of the boundary layer,

as predicted by Nieuwstadt’s theoretical model (e.g., Nieuwstadt, 1985) and observed previ-

ously in simulations (e.g., Beare et al., 2006; Basu and Porté-Agel, 2006; Stoll and Porté-Agel,

2008). Also in agreement with other GABLS results, the MGM delivers a general decrease of

boundary-layer depth, an enhancement of positive curvature in potential temperature in the

interior of the SBL, and an increase in jet strength with increased resolution. The current 643

simulation has already yielded a boundary-layer depth similar to that of the 803 simulation

results performed using a local dynamic model (Basu and Porté-Agel, 2006).

The Ekman spiral refers to a structure of currents or winds near a horizontal boundary in

which the flow direction rotates as one moves away from the boundary. The laminar solution

produces a surface wind parallel to the surface-stress vector and at 45◦ to the geostrophic wind,

a flow angle that is somewhat larger than that observed in real conditions. Figure 10 presents

a surface flow angle of approximately 35◦, which is in good agreement with most SBL cases

(e.g., Kosovic and Curry, 2000; Basu and Porté-Agel, 2006).

In SBL simulations, the nondimensional velocity gradient, ΦM , and the nondimensional
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Figure 9: Mean (a) wind speed and (b) potential temperature obtained from different resolution

simulations of the GABLS case.
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Figure 10: Wind hodographs obtained from different resolution simulations of the GABLS case

using the MGM.

temperature gradient, Φθ, are key parameters for surface parameterizations in large-scale models

and in assessments of SGS models. Owing to the existence of non-zero mean spanwise velocity

component, the definition equation (11) is modified as

ΦM =
κz

u∗

√(
∂ < ũ >

∂z

)2

+

(
∂ < ṽ >

∂z

)2

. (13)

In the surface layer, ΦM and Φθ are usually parameterized as functions of z/L. For instance,
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Figure 11: Nondimensional (a) velocity gradient and (b) temperature gradient obtained from

different resolution simulations of the GABLS case. The solid and dashed lines correspond to

the formulations according to equations (14) and (15).

the well-known linear relations (Businger et al., 1971; Stull, 1988)

ΦM = 1 + 4.7
z

L
, Φθ = 0.74 + 4.7

z

L
, (14)

and nonlinear relations derived from Beljarrs and Holtslag (1991)

ΦM = 1 + z
L

(
a+ be−

dz
L

(
1 + c− dz

L

))
,

Φθ = 1 + z
L

(
a
√
1 + 2

3
az
L
+ be−

dz
L

(
1 + c− dz

L

))
,

(15)

where the coefficients are a = 1, b = 2/3, c = 5 and d = 0.35. These formulations are plotted

along with the LES ΦM and Φθ results as functions of z/L in figure 11. The points are from

the lowest 40m of the simulation domain. In general, all the simulation results agree quite

well with the empirical relations. Consistent with model performance in the neutral ABL case

(Lu and Porté-Agel, 2010), the nondimensional velocity gradient is slightly underestimated for

the lowest two to three grid points. It is likely to be associated with the slightly excessive

dissipation characteristics of the model. With the coupling of the velocity field and the scalar

field, the computed nondimensional scalar gradient matches the similarity profiles remarkably

well. In the bulk of the surface layer the results have better agreement with equation (14) than

equation (15).

5.2 Turbulent fluxes

Figure 12 shows the mean total and partial (SGS and resolved) profiles of vertical momentum

flux and buoyancy flux obtained from the 1283 simulation. The dotted lines show the resolved
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fluxes, and the dashed lines denote the SGS contribution. As would be anticipated, near

the ground the SGS contribution is much larger than its resolved counterpart. In the GABLS

intercomparison study, there is a spread between the total momentum and buoyancy flux profiles

simulated using different models. In particular, the magnitude of the surface momentum flux

ranges from 0.06 to 0.08 [m2/s2], and the magnitude of the surface buoyancy flux ranges from

3.5 to 5.5× 10−4 [m2/s3]. The current simulation results fall in the ranges.
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Figure 12: Mean total and partial (subgrid-scale and resolved) (a) momentum flux profiles and

(b) buoyancy flux profiles corresponding to the 1283 simulation of the GABLS case using the

MGM.
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Figure 13: Mean normalized total (a) momentum flux profiles and (b) buoyancy flux profiles

obtained from different resolution simulations of the GABLS case.

It is interesting to explore the normalized flux profiles as shown in figure 13. Nieuwstadt’s

analytical model (Nieuwstadt, 1985) predicts that the total buoyancy flux, if normalized by its
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surface value, should be a linear function of z/δ, where the boundary-layer depth δ is defined as

(1/0.95) times the height where the horizontally averaged flux falls to five percent of its surface

value (Beare et al., 2006); likewise, the total normalized momentum should follow a 3/2 power

law with z/δ. The intercomparison study of Beare et al. (2006) and the studies of Basu and

Porté-Agel (2006) and Stoll and Porté-Agel (2008) have shown that high-resolution LESs and

advanced models could reproduce the profiles to a high degree of accuracy. It is clear that our

results follow the theoretical predictions quite closely at all resolutions.

6 Summary

An extension of the modulated gradient SGS stress model (Lu and Porté-Agel, 2010) to the

scalar closure problem has been introduced and tested through an assessment in simulations

of neutrally stratified and stably stratified ABL turbulence. The new model assumes that the

magnitude of the SGS flux vector is computed as the multiplication of an SGS velocity scale and

an SGS scalar concentration scale, and the structure (i.e., the relative magnitude of the vector

components) of the SGS flux vector is modeled by the normalized gradient vector, which can

be derived from Taylor expansion of the SGS flux. Different from standard gradient models,

we use the local-equilibrium hypothesis to estimate the SGS velocity scale and the SGS scalar

concentration scale, and adopt clipping procedures to avoid backscatter. This, together with

the fact that the model uses only local velocity gradients and local scalar gradients, and does

not require extra filtering, makes this model computationally efficient.

We examined the proposed model in simulations of a well-established neutral ABL case

and a well-known stable ABL case. These are the first successful LESs of the ABL using

an unmixed gradient scheme. It is well known that in the surface layer, where SGS motions

contribute to a large fraction of the total turbulent fluxes, LES of the ABL is rather sensitive

to the SGS model. Traditional eddy-viscosity/diffusivity models yield deviations from the

Monin-Obukhov similarity forms in the surface layer. The deviations are readily observed

in the wind and temperature profiles, and to a greater extent in their dimensionless vertical

derivatives. The new model presents a significant improvement with respect to simple eddy-

diffusivity-type models. In summary, the major conclusions from this paper are: (i) gradient

models can undergo modifications that help achieve stable and robust simulations; (ii) the local-

equilibrium hypothesis together with a clipping procedure provides reasonable estimations of

the SGS velocity scale and the SGS scalar concentration scale; and (iii) the applications of

the new model to a passive scalar case in a neutral ABL flow and an active scalar case in

a stable ABL flow show the model can achieve the expected similarity profiles in the surface

layer, realistic spectral scaling, as well as other important statistical characteristics of ABL
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turbulence.

Despite the good performance of the new model, it is important to note that the selected

constant values of the model coefficients are based on theoretical arguments, which are strictly

valid only in the inertial subrange of high-Reynolds-number turbulence. The optimum values of

the model coefficients could vary in complex flow conditions, such as turbulent fields near solid

walls, rotating flows, mixing layers, or transitional flows. Possible future model modifications

(increasing complexity and computational cost) include the development of dynamic and scale-

dependent dynamic procedures to optimize the values of the model coefficients using information

of the resolved scales. Moreover, we will develop and assess more advanced modifications (e.g.,

one-equation models), which could offer alternatives to relax some of the model assumptions,

such as the local-equilibrium hypothesis. Future work should also include a-priori studies using

DNS data, field data, etc., and a-posteriori testings of the model in other flow conditions (e.g.

isotropic turbulent flows, heterogeneous ABL flows).
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[31] C. B. da Silva and O. Métais. On the influence of coherent structures upon interscale

interactions in turbulent plane jets. J. Fluid Mech., 473:103–145, 2002.

[32] N. Park, S. Lee, J. Lee, and H. Choi. A dynamic subgrid-scale eddy viscosity model with

a global model coefficient. Phys. Fluids, 18:125109, 2006.

24



[33] D. You and P. Moin. A dynamic global-coefficient subgrid-scale eddy-viscosity model for

large-eddy simulation in complex geometries. Phys. Fluids, 19:065110, 2007.

[34] C. B. da Silva and J. C. F. Pereira. On the local equilibrium of the subgrid scales: The

velocity and scalar fields. Phys. Fluids, 17:108103, 2005.

[35] S. S. Girimaji and Y. Zhou. Analysis and modeling of subgrid scalar mixing using numerical

data. Phys. Fluids, 8:1224, 1996.
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[48] R. Stoll and F. Porté-Agel. Dynamic subgrid-scale models for momentum and scalar fluxes

in large-eddy simulations of neutrally stratified atmospheric boundary layers over heteroge-

neous terrain. Water. Resour. Res., 42:W01409, 2006b.
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[56] T. von Kármán. Mechanical similitude and turbulence. Tech. Mem., No. 611, Washington

D.C., NACA, 1931.

[57] J. Kim and P. Moin. Transport of passive scalars in a turbulent channel flow. Proceedings of

the 6th International Symposium on Turbulent Shear Flows, Toulouse, France, 7-9 September

1987 (Spinger-Verlag, Berlin), 1987.

26



[58] R. J. Beare, M. K. MacVean, A. A. M. Holtslag, J. Cuxart, I. Esau, J.-C. Golaz, M. A.

Jimenez, M. Khairoutdinov, B. Kosovic, D. Lewellen, T. S. Lund, J. K. Lundquist, A. Mc-

Cabe, A. F. Moene, Y. Noh, S. Raasch, and P. Sullivan. An intercomparison of large-eddy

simulations of the stable boundary layer. Boundary-Layer Meteorol., 118(2):247–272, 2006.

[59] R. J. Beare and M. K. MacVean. Resolution sensitivity and scaling of large-eddy simulations

of the stable boundary layer. Boundary-Layer Meteorol., 112(2):257–281, 2004.
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