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A recently introduced nonlinear model underwent evaluation based on two isotropic turbulent
cases: a WISC case at a moderate Reynolds number and a JHU case at a high Reynolds number.
The model uses an estimation of the subgrid-scale (SGS) kinetic energy to model the magnitude
of the SGS stress tensor, and uses the normalized velocity gradient tensor to model the structure
of the SGS stress tensor. Testing was performed for the first case through a comparison between
direct numerical simulation (DNS) results and large eddy simulation results regarding resolved
kinetic energy and the energy spectrum. In the second case, we examined resolved kinetic energy,
the energy spectrum, as well as other key statistics including the probability density functions of
velocities and velocity gradients, the skewness factor, and the flatness factor. Simulations using
the model were numerically stable, and results were satisfactorily compared with DNS results and
consistent with statistical theories of turbulence.
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Large-eddy simulation (LES) is a tool for the study
of high-Reynolds-number turbulent flows. The physical
basis for LES is the separation of the flow into resolved
and subgrid-scale (SGS) motions. The resolved motions
contain most of the energy and can be computed numer-
ically by solving LES governing equations, while effects
of the less energetic SGS motions are parameterized.
It has come to our attention that a recently introduced

nonlinear model can achieve stable simulations of high-
Reynolds-number atmospheric boundary layer turbulent
flows, and can deliver the expected logarithmic velocity
profile in the near-wall region, the correct spectral scal-
ing, and some other key statistics.[1] This letter presents
an assessment of this model in decaying isotropic turbu-
lent flows in order to more comprehensively understand
its characteristics and ensure its capabilities as a simple
alternative to eddy-viscosity model.
The LES governing equations of homogeneous incom-

pressible isotropic flow are
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where p̃ is the effective pressure, ν is the kinematic vis-
cosity, and the SGS stress tensor is τij = ũiuj − ũiũj ,
which must be closed in terms of the resolved field.
Numerous SGS models have been proposed since the

1960s. Eddy-viscosity models are the most commonly
used SGS models in LES. Based on the Boussinesq
hypothesis,[2] they are constructed using the constitutive
relations
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τkk
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δij = −2νtS̃ij , (2)

where S̃ij = (∂ũi/∂xj + ∂ũj/∂xi) /2, and νt is the eddy
viscosity. The Smagorinsky model (SM)[3] assumes that

the eddy viscosity is modeled as νt = (Cs∆̃)2|S̃|, where

|S̃| =
(
2S̃ijS̃ij

)1/2
is the strain rate, and we adopt the

Smagorinsky coefficient, Cs = 0.17, in the study as sug-
gested in previous studies.[4]

The variety of SGS models arises not only because the
theoretical justifications are arguable but also because
LES solutions are sensitive to the type of SGS model.
Different from eddy-viscosity models, the gradient model
(GM, also referred to as a “nonlinear model” or “Clark
model”) derives from the Taylor series expansions of the
SGS terms that appear in the LES equations [5, 6]

τij = Gij , (3)

where G̃ij = ∆̃2
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, and makes no use of prior

knowledge of the interactions between the resolved mo-
tions and the SGS motions. At a-priori level, the GM
predicts the structure of the exact SGS terms much more
accurate than that eddy-viscosity models do (and then
are better able to capture anisotropic effects and disequi-
librium [7–9]). These features make the GM attractive.

However, when implemented in LESs, the GM per-
forms less efficiently for dealing with the level of energy
dissipation, as a result, simulations often become numer-
ically unstable as reported.[10]. This has led to so-called
mixed models, in which an O(∆̃2) or O(∆̃4) viscosity
term can be added.[9, 11] As an alternative approach to re-
solving this issue, the modulated gradient model (MGM)
has been introduced [1]

τij = 2ksgs

(
G̃ij

G̃kk

)
. (4)

The MGM uses an estimation of the SGS kinetic energy
(ksgs = 1

2τii) to model the magnitude of the SGS stress
tensor, and the normalized velocity gradient tensor to
model the structure of the SGS stress tensor, i.e, the
relative magnitude of the different tensor components.
To evaluate ksgs, we adopt the “local” equilibrium hy-
pothesis, which assumes a balance between SGS energy
production and dissipation rate. SGS energy production
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is defined as P = −τij
∂ũi

∂xj
= −τijS̃ij . A simple eval-

uation of kinetic energy dissipation is ε = Cε
k3/2
sgs

∆̃
, and

the coefficient is assumed to be Cε = 1 based on pre-
vious studies.[12, 13] For ensuring numerical stability, no
local energy transfer from unresolved to resolved scales is
allowed, a step consistent with the fact that dissipation
rate is nonnegative, then one can obtain
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where H(x) is the Heaviside step function defined as
H(x) = 0 if x < 0 and H(x) = 1 if x ≥ 0.
In this model assessment study, we adopt two decay-

ing isotropic turbulent cases. Decaying isotropic turbu-
lence is governed by two key elements, nonlinearity and
viscosity; thus is a typical setup for the assessment of
SGS models. All simulations are performed on periodic
grids in a [0, 2π]3 domain using a modified version of the
pseudo-spectral code used for previous studies.[8, 9, 14, 15]

The viscous term is solved using an integrating factor,
which helps increase numerical stability and to decrease
numerical diffusion. The time advance is carried out
through the use of an explicit third order Runge-Kutta
scheme. The corresponding aliasing errors are corrected
in the nonlinear terms according to the 2/3 rule in a
cubic-truncation manner.[16] In LES, the filter size is im-
plicit, and previous research has suggested that the ratio
of the filter size to the grid size is in a range of 1 ∼ 2.[10]

We have found that the filter size, ∆̃ = 1.5h (where h is
the grid size), yields satisfactory results. Also, we use a
small Courant-Friedrichs-Lewy number of 0.1 to suppress
numerical dissipations. Note that in the presentation, we
normalize the time scale using the initial eddy turn-over
time.
A direct numerical simulation (DNS) case has been

simulated at the University of Wisconsin-Madison
(WISC) by means of decaying, and has been adopted in
previous model assessment studies.[8, 9] The initial Taylor
micro-scale Reynolds number (Reλ) is approximately 85.
Thus, the 1283 DNS has resolved the flow of all scales,
and the DNS results can be used to verify the accuracy
of SGS models and identify their problems. Figure 1(a)
shows the evolution of the resolved kinetic energy ob-
tained from DNS and LESs. The decaying case starts at
Reλ = 85, and is beyond the capability of 643 simula-
tion (typically Reλ ∼ 50). The total resolved kinetic en-
ergy obtained from the 643 simulation without a model,
which simply omits τij , yields the worst prediction. In
order to obtain proper kinetic energy decay rates, tur-
bulence modeling is needed for coarser grids. It is clear
that the results obtained using the MGM are in the best
agreement with the filtered DNS results.
The SM yields a higher kinetic energy decay rate than

that is found in the filtered DNS results. Figure 1(b)
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FIG. 1. (a) Evolution of resolved kinetic energy (normalized
by its initial value); (b) comparison of energy spectra at t =
0.4.
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FIG. 2. Initial instantaneous contours of: (a) exact ksgs ob-
tained from DNS; (b) ksgs obtained using the clipping proce-
dure; and (c) ksgs obtained without clipping.

shows that using the SM, kinetic energy at small scales
is dissipated excessively. By construction, the GM allows
for energy “backscatter.” However, over a period of time,
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the GM yields a lower kinetic energy decay rate, and
kinetic energy at small scales is accumulating (cannot
be dissipated effectively) as shown in figure 1(b). As its
revision, the MGM has shown significant improvement in
energy-spectrum accuracy.
Figure 2 compares the SGS kinetic energy obtained

from the filtered DNS data, and two evaluations using the
clipping procedure (Eqn. 5) and without clipping (the
step function is disabled). The estimated SGS kinetic
energy follows the same order as the exact SGS kinetic
energy. However, the discrepancy in distributions is no-
ticeable. Alternative ways of computing ksgs that might
improve accuracy, include solving an additional trans-
portation equation. A comparison between figure 2(b)
and figure 2(c) removes any worry that the clipping pro-
cedure, by possibly yielding high-level jumps, would thus
create numerical instabilities. Clearly, high-magnitude
ksgs contours are identical, and the clipping procedure
merely smooths out any low-magnitude ksgs.
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FIG. 3. (a) Evolution of resolved kinetic energy (normalized
by its initial value); (b) energy spectra obtained from 1283

LES at time = 0, 0.5, 2.0, 4.0 and 8.0.

For further testing of the new model, a high-Reynolds-
number case is conducted. The original simulation was
performed at the Johns Hopkins University (JHU) us-
ing 1024 grid points in each direction.[17] The database
contains a 10244 space-time history of an incompress-

ible isotropic turbulent flow in 3D. The initial condi-
tion for decaying LES runs, downloaded from “turbu-
lence.pha.jhu.edu” at time equals 2 without space inter-
polation, bears Reλ = 430. A direct numerical simu-
lation of decay was lacking; thus comparisons could be
performed only against statistical theories of turbulence.
Figure 3(a) shows the evolution of the resolved kinetic
energy obtained from the LESs using the new model at
the resolutions of 1283 and 643. Overall, two simulations
are in good agreement. The dissipate rate of the 643

LES is slightly lower in the early period. The top-right
corner presents their power-law decay behaviors. Pre-
vious experiments, DNSs and analyses have found that
two decay exponents, one during the initial period and
the other during the final period are depending on the ini-
tial conditions.[18, 19] Self-similar solution shows that the
shape of the kinetic-energy spectrum at a low wavenum-
ber determines the initial decay rate, and the highest
decay exponents are 2 during the initial decay and 2.5
during the final period.[19] In the current study, simula-
tions yield the initial and final decay exponents are ap-
proximately 1.5 and 2.4. Figure 3(b) shows the kinetic
energy spectra at different times. They follow the −5/3
power-law behavior until the dissipation range starts to
be captured through LES at a late period, and impor-
tantly, there are no improper accumulations of kinetic
energy at small scales.

Figures 4(a) and 4(b) show the probability density
functions (PDFs) of velocities and longitudinal velocity
gradients, and figure 4(c) shows the evolutions of skew-
ness and flatness factors. The velocity derivatives are
calculated from the Fourier components of the velocity
field and then transformed into physical space. The re-
sults are in good agreement with the results reported in
the literature.[17, 19–21] Theoretically, PDFs of turbulent
velocities are near-Gaussian; thus the skewness factors
of velocities are almost zero and the flatness factors of
velocities are close to 3. Whereas, velocity derivatives
are not exactly Gaussian random variables as shown that
the skewness factors of velocity gradients have a negative
value of approximately −0.35 and the flatness factors of
velocity gradients are close to 3.8. The lack of Gaussian-
ity is an intrinsic feature of turbulence because of the
nonlinearity of the Navier-Stokes equations, and the new
model can achieve this feature.

In summary, we have tested a recently introduced non-
linear SGS model in simulations of two decaying isotropic
turbulent cases. The model uses the normalized velocity
gradient tensor to model the structure of the SGS stress
tensor, and estimates the SGS kinetic energy on the ba-
sis of the “local” equilibrium hypothesis. There is no
requirement of an extra filtering - thus, the model is com-
putationally efficient. Applications to decaying isotropic
turbulent cases at a moderate Reynolds number and at a
high Reynolds number show that the model can achieve
reasonable spectral scaling, as well as some key statistical
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FIG. 4. (a) Probability density functions (PDFs) of velocities;
(b) PDFs of longitudinal velocity gradients; and (c) evolutions
of skewness and flatness factors. PDFs are normalized by the
multiplication of

√
2π and rms values; and variables are nor-

malized by rms values. The solid line is Gaussian distribution.

characteristics of isotropic turbulence.
In its present formulation, the model needs a-priori

knowledge to determine the model coefficient. The se-
lected constant value is based on theoretical arguments,
which are strictly valid only in the inertial subrange of
high-Reynolds-number turbulence. Possible future mod-
ifications of the model include the development and test-
ing of dynamic and scale-dependent dynamic procedures

to optimize the value of the model coefficient using in-
formation of the resolved velocity field. Moreover, when
computing the SGS kinetic energy, researchers seeking to
improve accuracy could consider alternative approaches,
including solving an additional transportation equation.
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