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Abstract. A dynamic procedure is developed to compute the model coefficients in the recently introduced modulated gradient7

models for both momentum and scalar fluxes. The magnitudes of the subgrid-scale (SGS) stress and the SGS flux are estimated8

using the local equilibrium hypothesis, and their structures (relative magnitude of each of the components) are given by the9

normalized gradient terms, which are derived from the Taylor expansion of the exact SGS stress/flux. Previously, the two model10

coefficients have been specified on the basis of theoretical arguments. Here, we develop a dynamic SGS procedure, wherein the11

model coefficients are computed dynamically according to the statistics of the resolved turbulence, rather than provided a priori12

or ad hoc. Results show that the two dynamically calculated coefficients have median values that are approximately constant13

throughout the turbulent atmospheric boundary layer (ABL), and their fluctuations follow a near log-normal distribution. These14

findings are consistent with the fact that, unlike eddy-viscosity/diffusivity models, modulated gradient models have been found to15

yield satisfactory results even with constant model coefficients. Results from large-eddy simulations of a neutral ABL and a stable16

ABL using the new closure show good agreement with reference results, including well-established theoretical predictions. For17

instance, the closure delivers the expected surface-layer similarity profiles and power-law scaling of the power spectra of velocity18

and scalar fluctuations. Further, the Lagrangian version of the model is tested in the neutral ABL case, and gives satisfactory19

results.20

Keywords: Atmospheric boundary layer, Large-eddy simulation, Subgrid-scale modelling21

1. Introduction22

The high Reynolds-number turbulent atmospheric boundary layer (ABL) bears a wide range of turbulent23

length scales, from millimetres to kilometres. It is difficult to develop a general and yet simple turbulence24

model for climate and mesoscale applications owing to the complex physical processes involved in ABL flows.25

Since the pioneering work of Deardorff (1970, 1972), large-eddy simulation (LES) has been employed as the26

most accurate approach to simulate ABL turbulence. The physical basis for LES is the separation of the flow27

into grid resolved and subgrid-scale (SGS) motions. This is achieved through the use of a three-dimensional28

spatial filtering operation, denoted here as a tilde (∼). The resolved motions contain most of the energy,29

and one can compute them numerically by solving the LES governing equations, while the effects of the less30

energetic SGS motions are parametrized. Filtering the equations describing the conservation of momentum31

and scalar concentration (e.g., temperature) results in two extra terms: the SGS stress, τij , and the SGS flux,32

qi33

τij = ũiuj − ũiũj , (1)34

and35

qi = ũiθ − ũiθ̃ , (2)36

where τij and qi must be closed in terms of the resolved velocity field ũi and the resolved scalar field θ̃.37

Small-scale processes in ABL flows, which influence the vertical and horizontal exchange of quantities38

between the surface and the atmosphere as well as the mixing within the atmosphere, show great sensitivity39

to the model formulation (Holtslag, 2006). The representation of these processes using an SGS closure is40

non-trivial owing to the fact that there exist many non-linear processes. Numerous SGS closures have been41

proposed since the introduction of the first SGS stress model of Smagorinsky (1963). The Smagorinsky model,42
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as the most commonly used model, belongs to the family of eddy-viscosity and eddy-diffusivity models. They43

are all based on two important assumptions: (i) the effects of the SGS motions on the resolved motions are44

essentially energetic actions, so that the modelling focuses primarily on the balance of the energy transfers45

between the two scale ranges, and (ii) the energy-transfer mechanism is analogous to the molecular mechanism46

represented by diffusion. The local equilibrium hypothesis is often adopted to determine the model coefficients.47

In the context of ABL flows, the early eddy-viscosity/diffusivity models have revealed that the mean modelled48

wind and temperature profiles in the surface layer differ from those in experiments and observations following,49

for example, the Monin-Obukhov similarity forms (e.g., Businger et al., 1971; Stull, 1988). Specifically, the50

non-dimensional vertical gradients of velocity and temperature could be overestimated by more than 20% in51

the surface layer. To try and resolve this issue, researchers have introduced quite a few modifications. For52

instance, Mason (1989) and Mason and Thomson (1992) used an ad hoc expression to provide appropriate53

SGS mixing lengths; Sullivan et al. (1994) proposed a two-part eddy-viscosity/diffusivity model that includes54

contributions from the mean flow and the turbulent fluctuations near the surface; Kosović (1997) proposed a55

non-linear modification that allows for a backward energy cascade; and Porté-Agel et al. (2000) and Porté-Agel56

(2004) used a scale-dependent dynamic approach to compute the model coefficients dynamically, while allowing57

for scale dependence of the coefficients.58

A major drawback of eddy-viscosity/diffusivity models, found in a priori analyses of fields obtained from59

experiments and simulations (Liu et al., 1994; Menon et al., 1996; Porté-Agel et al., 2001; Higgins et al.,60

2003; Lu et al., 2007), is the low correlation between the exact SGS term and the eddy-viscosity/diffusivity61

term. Khanna and Brasseur (1998), Juneja and Brasseur (1999), and Porté-Agel et al. (2000) have also shown62

that, on coarse grids, eddy-viscosity models may induce large errors because they are not able to account for the63

strong flow anisotropy in the ABL surface layer. Further, eddy-viscosity models do not have the same rotation64

transformation properties as the actual SGS stress tensor, which is not material frame indifferent (MFI). Recent65

studies (Kobayashi and Shimomura, 2001; Horiuti, 2006; Lu et al., 2007, 2008) have revisited the importance66

of the MFI consistency of the modelling SGS stresses. In LES of mesoscale and large-scale atmospheric67

turbulence including planetary rotation, eddy-viscosity models induce extra errors and yield unsatisfactory68

results, such as the incapability of capturing cyclone-anticyclone asymmetry (Lu et al., 2008). In addition,69

eddy-viscosity/diffusivity models are by construction fully dissipative, and do not allow energy transfers from70

unresolved to resolved scales. However, such inverse energy transfers are known to occur (Cambon et al.,71

1997; Smith and Waleffe, 1999).72

The variety of SGS models arises not only because the theoretical justifications are arguable but also73

because LES solutions are sensitive to the given type of SGS models, especially in the surface layer of ABL74

flows. In contrast to eddy-viscosity/diffusivity models, gradient models are derived from the Taylor series75

expansions of the SGS terms that appear in the filtered conservation equations (Clark et al., 1979), do not76

locally assume the same eddy viscosity/diffusivity for all directions, and make no use of prior knowledge of77

the interactions between resolved motions and SGS motions. At the a priori level, gradient models generally78

predict the structure of the exact SGS terms much more accurately than eddy-viscosity/diffusivity models79

(and therefore are better able to capture anisotropic effects and disequilibrium, e.g., Liu et al., 1994; Porté-80

Agel et al., 2001; Higgins et al., 2003; Lu et al., 2007, 2008; Chamecki, 2010). These features make gradient81

models attractive. However, when implemented in simulations, traditional gradient schemes are not able to82

yield the correct levels of SGS production (energy transfer between resolved and SGS scales), and as a result,83

simulations often become numerically unstable as reported in a variety of contexts (e.g., Sagaut, 2006).84

A new SGS closure derived from gradient models has been recently introduced (Lu and Porté-Agel,85

2010, 2013; Lu, 2011). Simulation results obtained with the use of this new closure show good agreement86

with well-established predictions and an evident improvement over results obtained using traditional eddy-87

viscosity/diffusivity models. On the basis of theoretical arguments, which are strictly valid only in the inertial88

subrange of high Reynolds-number turbulence, the closure adopts constant values for the two model coefficients.89

It is, however, arguable that one can effectively model a variety of phenomena present in turbulent flows using90
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two universal constants. A complementary and perhaps more reasonable approach is the dynamic procedure91

(Germano et al., 1991; Lilly, 1992), which is becoming more prevalent in simulations for determining coefficients.92

Basically, the approach adopts the assumption of scale invariance by applying the coefficients optimised from93

the resolved scales to the SGS range, accomplished by applying a test filter at a scale slightly larger than94

the resolved scale (∆̃). Thus, the model coefficients can be determined on the basis of the resolved flow field95

without a priori or ad hoc specifications.96

In this paper, we present the development of a dynamic non-linear SGS closure in Sect. 2. We test the97

performance of the new closure in high Reynolds-number simulations of a neutrally stratified ABL case and a98

stably stratified ABL case. Section 3 describes the governing equations and common numerical set-up. While99

Sect. 4 and Sect. 6 present the LES results. Section 8 summarises the main results.100

2. Dynamic SGS closure coupling with a passive scalar101

The non-linear model formulations introduced by Lu and Porté-Agel (2010, 2013) for the SGS stress tensor,102

τij = ũiuj − ũiũj , and for the SGS flux vector, qi = ũiθ − ũiθ̃, can be written as103

τij = 2ksgs

(
G̃ij

G̃kk

)
, (3)104

and105

qi = |q|

(
G̃θ,i

|G̃θ|

)
. (4)106

The method separates the modelling into two elements: the normalized gradient terms serve to model the107

structure (relative magnitude of each component); and a separate approach is needed for the SGS kinetic108

energy, ksgs = 1
2τii, and the magnitude of the SGS flux vector, |q|. To account for the grid anisotropy in109

the study (∆̃x, ∆̃y and ∆̃z are not equal), we define G̃ij = ∆̃2
x

12
∂ũi
∂x

∂ũj

∂x +
∆̃2

y

12
∂ũi
∂y

∂ũj

∂y + ∆̃2
z

12
∂ũi
∂z

∂ũj

∂z , and G̃θ,i =110

∆̃2
x

12
∂ũi
∂x

∂θ̃
∂x +

∆̃2
y

12
∂ũi
∂y

∂θ̃
∂y +

∆̃2
z

12
∂ũi
∂z

∂θ̃
∂z , and compute the gradient vector’s magnitude with the Euclidean norm |G̃θ| =111 √

G̃2
θ,1 + G̃2

θ,2 + G̃2
θ,3. To close the approach, one needs to evaluate the magnitudes ksgs and |q|. Even though112

a previous approach (Chumakov and Rutland, 2005) places much emphasis on the scalar field, it is desirable,113

owing to the definition of the SGS flux vector as shown in Eq. 2, that the SGS flux magnitude encompasses114

both the velocity and the scalar fields. Therefore the flux magnitude is modelled as the multiplication of an115

SGS velocity scale and an SGS scalar concentration scale |q| = usgsθsgs (Lu and Porté-Agel, 2013). It is116

straightforward to assume that the SGS velocity scale is proportional to the square root of the SGS kinetic117

energy, usgs = C
√

ksgs. Further, one can identify the value of ksgs by using the resolved velocities on the basis118

of the local equilibrium hypothesis, which assumes a balance between the SGS kinetic energy production P119

(P = −τij
∂ũi
∂xj

= −τijS̃ij , where S̃ij =
1
2

(
∂ũi
∂xj

+
∂ũj

∂xi

)
is the resolved strain rate tensor) and dissipation rate ε.120

A classical evaluation of kinetic energy dissipation is ε = Cε
k
3/2
sgs

∆̃
. Simulations allow for no negative dissipation121

rate, the so-called clipping, leading to122

ksgs = H (P )
4∆̃2

C2
ε

(
− G̃ij

G̃kk

S̃ij

)2

, (5)123

where H(x) is the Heaviside step function defined as H(x) = 0 if x < 0 and H(x) = 1 if x ≥ 0. To predict124

the SGS scalar concentration scale, again we adopt the local equilibrium hypothesis, which assumes a balance125
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between the SGS scalar variance production, Pθ = −qi
∂θ̃
∂xi

, and the SGS scalar variance dissipation rate εθ. A126

classical evaluation of the SGS scalar variance dissipation rate is εθ = Cεθ
θ2sgsusgs

∆̃
. Using the proposed model127

formulation, together with the local equilibrium hypothesis, one obtains θsgs = ∆̃
Cεθ

(
− G̃θ,i

|G̃θ|
∂θ̃
∂xi

)
. The SGS128

scalar variance dissipation rate is always non-negative, thus129

θsgs = H (Pθ)
∆̃

Cεθ

(
−
G̃θ,i

|G̃θ|
∂θ̃

∂xi

)
. (6)130

Finally, one obtains the following equation for the magnitude of the SGS flux131

|q| = H (Pθ)H (P )
2
√
2∆̃2

CεCεθ

(
−
G̃θ,i

|G̃θ|
∂θ̃

∂xi

)(
− G̃ij

G̃kk

S̃ij

)
, (7)132

where C =
√
2 (usgs =

√
(ũiui − ũiũi) =

√
2 ksgs) has been assumed. Constant coefficients (Cε and Cεθ) were133

used in previous simulations (Lu and Porté-Agel, 2010, 2013; Lu, 2011). Even though results turned out to134

be reasonably satisfactory, it should be noted that the selected constant values rest on theoretical arguments135

that are strictly valid only in the inertial subrange of high Reynolds-number turbulence. Further, for complex136

flows, it may not be possible to find universal constants that are appropriate for the entire domain at all times.137

A more systematic way to compute the SGS model coefficients is to use the so-called dynamic procedure,138

which is based on the Germano identities (Germano et al., 1991; Lilly, 1992) for the SGS stress tensor and the139

SGS flux vector,140

Lij = Tij − τ ij = ũiũj − ũiũj , (8)141

and142

Ki = Qi − qi = ũiθ̃ − ũiθ̃ , (9)143

where Tij = ũiuj − ũiũj and Qi = ũiθ− ũiθ̃ are the stress and the flux at a test-filter scale ∆ = α∆̃ (typically144

α = 2). Lij and Ki can be evaluated on the basis of the resolved scales. Applying the dynamic procedure to145

the modulated gradient model, Tij and Qi are determined by146

Tij =
8

C2
ε

α2∆̃2

(
−G̃mn

G̃kk

S̃mn

)2(
G̃ij

G̃ll

)
, (10)147

148

Qi =
2
√
2α2∆̃2

CεθCε

(
−
G̃θ,j

|G̃θ|

∂θ̃

∂xj

)(
−G̃mn

G̃kk

S̃mn

)(
−
G̃θ,i

|G̃θ|

)
. (11)149

In order not to confuse the clipping procedure with the dynamic procedure and numerically leave more clippings150

in the flow, we do not consider clipping here. Hence, the Germano identities (Eqs. 8 and 9) can be re-written151

as152

Tij − τ ij =
1

C2
ε

Mij , (12)153

and154

Qi − qi =
1

CεθCε
Xi (13)155

where156

Mij = 8α2∆̃2

(
−G̃mn

G̃kk

S̃mn

)2(
G̃ij

G̃ll

)
− 8∆̃2

(
−G̃mn

G̃kk

S̃mn

)2(
G̃ij

G̃ll

)
, (14)157
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and158

Xi = 2
√
2α2∆̃2

(
−
G̃θ,j

|G̃θ|

∂θ̃

∂xj

)(
−G̃mn

G̃kk

S̃mn

)(
−
G̃θ,i

|G̃θ|

)
159

−2
√
2∆̃2

(
−
G̃θ,j

|G̃θ|
∂θ̃

∂xj

)(
−G̃mn

G̃kk

S̃mn

)(
−
G̃θ,i

|G̃θ|

)
. (15)160

Minimising the error associated with the use of the model formulation (Eqs. 3 and 4) in the Germano identity161

(Eqs. 8 and 9) over all independent components (Lilly, 1992), one obtains the evaluation expressions for Cε162

and Cεθ163

(Cε)
−2 =

LijMij

MijMij
, (16)164

and165

(CεθCε)
−1 =

KiXi

XjXj
. (17)166

In practise, the above equations do not guarantee positive values for (Cε)
−2 and (CεθCε)

−1, where positive167

values are necessary to ensure numerical stability. When negative coefficient values are encountered, following168

Lu and Porté-Agel (2010, 2013), we assign Cε = 1 and Cεθ = 1.169

3. Numerical simulations170

Previous studies (e.g., Andren et al., 1994; Sullivan et al., 1994) have stated that the discrepancy between171

simulation results and surface-layer similarity theory becomes more evident as surface buoyancy forcing de-172

creases. In this regard, one should expect a larger impact of the SGS formulation in neutral and stable cases173

than in convective (unstable) cases. Here, we focus on two cases: one involves neutral stability conditions, and174

the other involves stably stratified conditions. Also, because the simulated flows have high Reynolds numbers175

(commonly O(108) or larger), no near-wall viscous processes are resolved, and the viscous terms are neglected176

in the governing equations.177

We use a modified LES code that has been used for previous studies (e.g., Albertson and Parlange, 1999;178

Porté-Agel et al., 2000; Porté-Agel, 2004; Stoll and Porté-Agel, 2006a, 2006b, 2008; Lu and Porté-Agel, 2010).179

The code solves the filtered equations of continuity, conservation of momentum and scalar transport180

∂ũi
∂xi

= 0 , (18)181

∂ũi
∂t

+
∂ũiũj
∂xj

= − ∂p̃

∂xi
− ∂τij

∂xj
+ f̃i , (19)182

∂θ̃

∂t
+ ũi

∂θ̃

∂xi
= − ∂qi

∂xi
, (20)183

where (ũ1, ũ2, ũ3) = (ũ, ṽ, w̃) are the components of the resolved velocity field, θ̃ is the resolved scalar, p̃ is the184

effective pressure, and f̃i is a forcing term. In the stable case, the buoyancy force and the Coriolis force would185

be included as f̃i = δi3g
θ̃−⟨θ̃⟩H

Θ0
+ fcεij3ũj , where θ̃ represents the resolved potential temperature, Θ0 is the186

reference temperature, ⟨·⟩H denotes a horizontal average, g is the acceleration due to gravity, fc is the Coriolis187

parameter, δij is the Kronecker delta, and εijk is the alternating unit tensor.188

The simulated ABL is horizontally homogeneous, horizontal directions are discretized pseudo-spectrally, and189

vertical derivatives are approximated with second-order central differences. The height of the computational190
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domain isH, and the horizontal dimensions are Lx and Ly; the domain is divided intoNx,Ny, andNz uniformly191

spaced grid points. The grid planes are staggered in the vertical direction with the first vertical velocity plane192

at a distance ∆̃z =
H

Nz−1 from the surface, and the first horizontal velocity plane ∆̃z/2 from the surface. At the193

bottom, the instantaneous wall stresses are computed through the application of the Monin-Obukhov similarity194

theory (Porté-Agel et al., 2000; Porté-Agel, 2004): τi3|w = −u2∗
ũi

U(z) = −
(

U(z)κ
ln (z/z0)−ΨM

)2
ũi

U(z) , where κ is the195

von Kármán constant, u∗ is the friction velocity, z0 is the roughness length, ΨM is the stability correction196

for momentum, and U(z) is the plane-averaged resolved horizontal velocity. We compute the filter size using197

a common formulation ∆̃ = 3

√
∆̃x ∆̃y ∆̃z, where ∆̃x = Lx/Nx and ∆̃y = Ly/Ny. The corresponding aliasing198

errors are corrected in the non-linear terms according to the 3/2 rule (e.g., Canuto et al., 1988). The time199

advancement is carried out using a second-order accurate Adams-Bashforth scheme (e.g., Canuto et al., 1988).200

4. Neutral atmospheric boundary layer201

We adopt a classical numerical set-up used for previous model assessment studies (e.g., Porté-Agel et al., 2000;202

Porté-Agel, 2004; Lu and Porté-Agel, 2010). The height of the computational domain is H = 1000m, and203

the horizontal dimensions of the simulated volume are Lx = Ly = 2πH. We carried out simulations with204

resolutions of Nx ×Ny ×Nz = 32× 32× 32, 48× 48× 48, 64× 64× 64, 96× 96× 96, and 128× 128× 128. The205

simulated flow is driven by a constant pressure gradient −u2∗/H in the x-direction. We take u∗ = 0.45m s−1
206

and z0 = 0.1m, which is similar to the set-up in some previous studies (e.g., Andren et al., 1994; Porté-Agel207

et al., 2000; Lu and Porté-Agel, 2010). The upper boundary conditions are ∂ũ/∂z = 0, ∂ṽ/∂z = 0, w̃ = 0 and208

∂θ̃/∂z = 0. At the bottom, neutral stability results in ΨM = 0. A passive scalar field, similar to that simulated209

in previous studies (e.g., Andren et al., 1994; Kong et al., 2000; Porté-Agel, 2004; Lu and Porté-Agel, 2013),210

is introduced into the simulations by imposing a constant downward surface flux q3|w = −u∗θ∗.211

We have collected mean and turbulent statistics after achieving statistically steady states. In the presenta-212

tion, we denote the horizontal and time average as ⟨·⟩, and the fluctuation of an arbitrary resolved variable213

f̃ as f̃ ′ = f̃ −
⟨
f̃
⟩
; on certain occasions, we take the simulations of 643 node and 1283 node as base cases to214

present results.215

4.1. First-order measurements216

A longstanding problem in the LES of ABL flows is that the mean wind and temperature profiles differ from the217

similarity forms in the surface layer. In this subsection, we compare our numerical results with the predictions218

from similarity theory to gain a better understanding of the performance of the new closure.219

The logarithmic profile, which was first published by von Kármán in 1931, is a semi-empirical relationship220

used to describe the vertical distribution of horizontal wind speed above the surface within a turbulent221

boundary layer. The profile states that the mean streamwise velocity at a certain point in a turbulent boundary222

layer is proportional to the logarithm of the distance from that point to the wall. Established later, the Monin-223

Obukhov similarity theory, which includes thermal effects, has been experimentally confirmed in a number224

of field experiments (e.g., Businger et al., 1971), and represents one of the most firmly established results225

against which new SGS models should be compared. An example of the wind-speed profile in neutral cases226

can be written as the well-known logarithmic formulation: ⟨ũ⟩ = u∗
κ ln

(
z
z0

)
. Aerodynamic roughness, z0, is227

necessarily non-zero because the log law does not apply to the viscous and roughness sublayers. The log law is228

a good approximation to the velocity profile in the surface layer, which occupies the lowest 10% of the ABL. A229

rigorous way to evaluate model performance is to examine the values of the non-dimensional vertical gradients230

of the resolved streamwise velocity as a function of vertical position. The non-dimensional vertical gradient of231
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Figure 1. Non-dimensional vertical gradient of (a) the mean resolved streamwise velocity and (b) the mean resolved scalar
concentration obtained from simulations of the neutral ABL case. The dashed line corresponds to the classical similarity profile.
The left/right corner plots are a zoomed view of the surface layer and they have a log scale in the vertical direction.

the mean resolved streamwise velocity is defined as232

ΦM =

(
κz

u∗

)
∂ ⟨ũ⟩
∂z

. (21)233

On the basis of experimental results and dimensional analysis (e.g., von Kármán, 1931; Businger et al., 1971;234

Stull, 1988), it has been found that, in neutral cases, ΦM = 1 holds for all z in the surface layer. In this way,235

the logarithmic-layer mismatch can be manifested more clearly and can help quantitatively evaluate model236

performance. Andren et al. (1994) performed an extensive comparison of various LES codes using the standard237

Smagorinsky model with wall damping and other eddy-viscosity models. In the surface layer, their values of ΦM238

were mostly >1.2, and some simulations yielded ΦM ≈ 2. Many studies (Mason and Thomson, 1992; Sullivan239

et al., 1994; Kosović, 1997; Chow et al., 2005) have revealed similar overshoots in ΦM reaching over 1.5 for the240

standard Smagorinsky model. It appears that the standard Smagorinsky model is too dissipative, removing241

too much kinetic energy from the resolved field and generating a near-linear profile in the surface layer, which242

bears a large value of ΦM . Figure 1a presents the non-dimensional vertical gradient of the mean resolved243

streamwise velocity obtained from different resolution simulations using the new closure. The new closure244

slightly underestimates at the third and fourth grid points (with the lowest value being about 0.85), but245

overall yields a value of ΦM that remains close to 1 in the surface layer, indicative of the expected logarithmic246

velocity profile.247

For the scalar counterpart, one may examine the values of the non-dimensional vertical gradients of the248

mean resolved scalar concentration as a function of vertical position. That non-dimensional scalar gradient is249

defined as250

Φθ =

(
κz

θ∗

) ∂
⟨
θ̃
⟩

∂z
. (22)251

It has been well documented (e.g., Businger et al., 1971; Stull, 1988) that, in neutral cases, Φθ = 0.74 holds for252

all z in the surface layer. According to several studies (e.g., Mason and Thomson, 1992; Andren et al., 1994;253

Lu and Porté-Agel, 2013), standard SGS models yield values of Φθ that are significantly larger than 0.74 (some254

over 1.5). Figure 1b presents the non-dimensional vertical gradient of the mean resolved scalar concentration255
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obtained from different resolution simulations using the new closure. The new closure slightly overestimates256

only at the second grid point (with the highest value being about 0.85), but overall yields a value of Φθ that257

remains close to 0.74 in the surface layer.258

Further, we investigate the statistical characteristics of two model coefficients: Cε and Cεθ. Figure 2 shows259

the probability density functions (PDFs) of two model coefficients obtained from the 1283 simulation. We260

present results obtained at four different levels as examples, and bold grey lines represent PDFs of values261

over all levels. The PDFs of Cε and Cεθ show good consistency at all levels. In contrast, the PDFs of the262

Smagorinsky coefficient, CS , show visible differences at different heights in the ABL (Bou-Zeid et al., 2005;263

Stoll and Porté-Agel, 2006b, 2008).
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Figure 2. Probability density functions of the dynamically calculated coefficients, (a) Cε and (b) Cεθ, obtained at different heights
within the neutral ABL and overall.
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Figure 3. Averaged values of the dynamically calculated coefficients, (a) Cε and (b) Cεθ, obtained from different resolution
simulations of the neutral ABL case.
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Two subplots in Fig. 2 use a logarithmic scale for the x-axis, and reveal that the fluctuations of Cε and265

Cεθ follow a near log-normal distribution. For a log-normal distribution, the arithmetic mean overestimates266

the peak location; thus the averaged property is more readily treated by the use of the geometric mean (the267

geometric mean of a log-normal distribution is equal to its median) than the arithmetic mean. We adopt a268

procedure similar to that used in other studies (Stoll and Porté-Agel, 2006b), and plot the median values of Cε269

and Cεθ versus z/H in Fig. 3. Overall, the two dynamically calculated coefficients have averaged values that270

are approximately constant throughout the turbulent boundary layer. Recall that Cε = 1 and Cεθ = 1 (Lu and271

Porté-Agel, 2010, 2013) are reasonable values, even when based on theoretical arguments strictly validated272

only in the inertial subrange of high Reynolds-number turbulence.273

4.2. Power spectra274

It is important to test the ability of LES to accurately reproduce the main spectral characteristics of the275

resolved field. Spectra of velocity fields in turbulent boundary layers are known to exhibit three distinct276

spectral scaling regions: the energy-production range, the inertial subrange and the dissipation subrange. In277

the case of LES of the high Reynolds-number boundary layer, the dissipation subrange is not resolved and,278

therefore, is not considered here. It is well known (e.g., Perry et al., 1986; Saddoughi and Veeravalli, 1994;279

Katul and Chu, 1998; Venugopal et al., 2003) that the energy spectra of the three wind components satisfy280

the Kolmogorov −5/3 power law in the inertial subrange, i.e., the range of relatively small, isotropic scales281

that satisfy k1z & 1, where k1 is the streamwise wavenumber. Also, laboratory and field measurements (e.g.,282

Perry et al., 1986; Katul and Chu, 1998; Kunkel and Marusic, 2006) of boundary-layer turbulence show that,283

in the energy-production range corresponding to scales larger than the distance to the surface (k1z . 1) and284

smaller than the integral scale, spectra of the streamwise velocity component are often proportional to k−1
1 .285

Previous LES studies have examined model performance regarding energy spectra, and limitations have286

been found for traditional SGS models. The spectra of the streamwise velocity obtained using the standard287

Smagorinsky model decay faster than the expected −1 power law in the surface layer (e.g., Andren et al.,288

1994; Kosović, 1997; Porté-Agel et al., 2000). Within the constraints of the Smagorinsky model, this type of289

spectrum implies that the model dissipates kinetic energy at an excessive rate. The resulting spectra obtained290

using the dynamic Smagorinsky model, on the other hand, decay too slowly (the spectrum slope is close to291

−0.5) in the surface layer (Porté-Agel et al., 2000), likely due to the fact that the dynamic procedure samples292

scales near and beyond the local integral scale, at which the assumption of scale invariance of the coefficient293

(on which the model relies) breaks down, leading to an underestimation of the Smagorinsky coefficient near the294

surface (Porté-Agel et al., 2000). The lower coefficient then yields a lower energy dissipation rate and a pile-up295

of energy at high wavenumbers. Also, it was found that, in the inertial subrange, the dynamic Smagorinsky296

model may yield a streamwise velocity spectrum slope shallower (close to −0.8) than −5/3 (Piomelli, 1993) .297

Figures 4 and 5 show the normalized spectra of the simulated streamwise and vertical velocity components,298

computed at different heights. Spectra are calculated from one-dimensional Fourier transforms of the velocity299

component and then are averaged both horizontally and in time. The streamwise wavenumber is normalized by300

height, and the spectrum magnitude is normalized by u2∗z. It should be noted that the spectra of the spanwise301

velocity component (not shown here) are similar to the spectra of the streamwise velocity component. Clearly,302

in the inertial subrange (k1z & 1) all the normalized spectra show a better collapse comparing with results303

obtained using the standard Smagorinsky model, and are in good agreement with the −5/3 power law. For304

scales larger than the distance to the surface (k1z . 1), the slope of the spectra of the streamwise velocity305

component is slightly lower than −1 (close to −0.7). The spectra of the vertical velocity component differ from306

the spectra of the streamwise velocity component. There is no clear −1 power-law region; instead the spectra307

are flat in the surface layer. This finding is consistent with the expected distribution supported by theoretical308

(e.g., Townsend, 1976; Perry et al., 1986) and experimental studies (e.g., Perry et al., 1986; Katul and Chu,309

1998). It should also be noted that, at the lowest computational levels, the spectra of both velocity components310
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Figure 4. Averaged non-dimensional 1-D spectra of (a) the streamwise velocity component and (b) the vertical velocity component
obtained from the 643 simulation of the neutral ABL case. Heights (z/H) increase approximately from 0.008 to 0.5. The slopes of
−1 and −5/3 are also shown.

0.01 0.1 1 10

1E-3

0.01

0.1

1

10

100
-1

 
 

E u
(k

1,z
)u

-2 *
z-1

k
1
z

-5/3

0.004
0.01

0.02

0.5

0.01 0.1 1 10

0.01

0.1

 

 

E w
(k

1,z
)u

-2 *
z-1

k
1
z

-5/3

0.008
0.016

0.5

(a) (b)

Figure 5. Averaged non-dimensional 1-D spectra of (a) the streamwise velocity component and (b) the vertical velocity component
obtained from the 1283 simulation of the neutral ABL case. Heights (z/H) increase approximately from 0.004 to 0.5. The slopes
of −1 and −5/3 are also shown.

show an overly steep slope at the smallest resolved scales. At last, as expected in LES, the increase of grid311

resolution yields an extension of the resolved portion of the inertial subrange.312

The power spectrum of a scalar field is known to exhibit an inertial subrange and a dissipation subrange. In313

the inertial range, the spectrum follows the classical −5/3 power-law scaling (e.g., Sagaut, 2006); as with the314

velocity spectrum in a neutral ABL flow, the inertial subrange should extend for the range of relatively small315

scales corresponding to k1 ? z−1. Figure 6 shows the non-dimensional 1-D power spectra obtained from the316

simulations using the new closure at two resolutions (643 and 1283). The new approach is evidently capable of317

achieving the −5/3 power-law scaling in the inertial subrange. Also, as expected in LES, the increase of grid318

resolution will yield an extension of the resolved portion of the inertial subrange.319

main.tex; 4/04/2014; 18:04; p.10



Dynamic non-linear closure for LES 11

0.01 0.1 1 10

0.01

0.1

1

10

100

 

 
E

(k
1,z

)
-2 *
z-1

k
1
z

-5/3

0.008

0.02

0.04

0.5

0.01 0.1 1 10

0.01

0.1

1

10

100

 

 

E
(k

1,z
)

-2 *
z-1

k
1
z

-5/3

0.004

0.01
0.02

0.5

(a) (b)

Figure 6. Averaged non-dimensional 1-D spectra of the resolved scalar concentration obtained from (a) the 643 simulation of the
neutral ABL case; and (b) the 1283 simulation of the neutral ABL case. Heights (z/H) increase approximately from, (a) 0.008 to
0.5 or (b) 0.004 to 0.5. The slope −5/3 is also shown.

4.3. Second-order statistics320

Averaging (both horizontally and in time) the streamwise momentum equation yields ∂⟨ũ w̃⟩
∂z + ∂⟨τxz⟩

∂z = −∂⟨p̃⟩
∂x ,321

where ⟨ũ w̃⟩ is the mean resolved shear stress and ⟨τxz⟩ is the mean SGS shear stress. Since the simulated flow322

is driven by a constant pressure gradient, in the absence of viscous stresses, the normalized (by u2∗) mean total323

turbulent stress grows linearly from a value of −1 at the surface to a value of zero at the top of the boundary324

layer. Because < w̃ >= 0, it is easy to prove that ⟨ũ w̃⟩ equals ⟨ũ′ w̃′⟩. Mean resolved shear stress should325

be negative indicating an overall tendency that faster (ũ′ > 0) fluid parcels are moving downward (w̃′ < 0)326

and slower (ũ′ < 0) fluid parcels are moving upward (w̃′ > 0). Figure 7a shows the vertical distribution of327

the normalized total and partial (resolved and subgrid-scale) shear stresses obtained from the 1283 baseline328

simulation and the normalized SGS stresses obtained from two coarser grids (643 and 963). As expected,329

the coarser resolution simulations yield SGS stresses that are larger in magnitude than the higher resolution330

counterparts. The distribution of total turbulent stress is indeed consistent with the expected linear behaviour.331

The result also serves as a confirmation of stationarity and momentum conservation of the scheme.332

Figure 7b shows the vertical distributions of the normalized total and partial wall-normal fluxes obtained333

from the 1283 simulation, and also includes the normalized SGS stresses and SGS fluxes obtained from two334

coarser grids (643 and 963). Similarly, the coarser resolution simulations yield the SGS fluxes that are larger335

in magnitude than the higher resolution counterparts. The similarity between the characteristics of the total336

turbulent stress and the total turbulent flux has been reported by direct numerical simulation (DNS) studies337

(e.g., Kim and Moin, 1987), indicating that productions of scalar fluctuations also take place intermittently338

just as that of velocity fluctuations. Also the near-linear feature of the total turbulent flux is in good agreement339

with both DNS results (e.g., Kim and Moin, 1987; Kong et al., 2000) in the logarithmic region, and LES results340

(e.g., Porté-Agel, 2004; Lu and Porté-Agel, 2013) of a neutral ABL flow.341

5. Active scalar modification342

We now turn to the case of coupling with an active scalar (i.e. with a field that has feedback effects on the343

velocity field), leading to a two-way coupling between the momentum and the scalar equations. We place the344
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Figure 7. Vertical distributions, in the neutral ABL, of the normalized total and partial (subgrid-scale and resolved): (a) shear
stresses and (b) wall-normal fluxes.

emphasis on buoyancy effects. Reviews (e.g., Sagaut, 2006) show that interscale energy transfers in flows are345

strongly affected in both stable and unstable stratification cases. This is the reason most scalar models are346

derived in relation to a simplified kinetic energy balance equation that includes buoyancy effects. One obtains347

the balance by neglecting all diffusive and convective effects, yielding an extended local equilibrium assumption348

ε = −τijS̃ij +
g

Θ0
q3 . (23)349

Recall ε = Cε
k
3/2
sgs

∆̃
and that q3 is modelled as

√
2ksgsθsgs

(
G̃θ,3

|G̃θ|

)
based on Eq. 4; thus, one obtains350

Cε
k
3/2
sgs

∆̃
= −2ksgs

(
G̃ij

G̃kk

)
S̃ij +

g

Θ0

√
2ksgsθsgs

(
G̃θ,3

|G̃θ|

)
. (24)351

This equation bears three solutions; we do not consider ksgs = 0, and also we exclude another solution1, since352

it is the solution formed from ksgs = 0 and results in an opposite trend of buoyancy effects (for instance, stably353

stratification should lower the SGS kinetic energy). Thus, one can arrive at the modified model expression for354

the SGS kinetic energy by substituting ∆̃
Cεθ

(
− G̃θ,i

|G̃θ|
∂θ̃
∂xi

)
for θsgs,355

ksgs =
∆̃2

C2
ε

[(
− G̃ij

G̃kk

S̃ij

)
+356

√√√√(− G̃ij

G̃kk

S̃ij

)2

+

√
2Cεg

CεθΘ0

(
−
G̃θ,i

|G̃θ|
∂θ̃

∂xi

)(
G̃θ,3

|G̃θ|

)
2

. (25)357

1 The solution is ksgs = ∆̃2

C2
ε

[(
− G̃ij

G̃kk
S̃ij

)
−

√(
− G̃ij

G̃kk
S̃ij

)2

+
√
2Cε

∆̃

g
Θ0

θsgs
(

G̃θ,3

|G̃θ|

)]2

.
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It is difficult to propose a dynamic procedure because the model coefficients Cε and Cεθ are coupled in this358

expression, and so we adopt the previous simple approach, Cε/Cεθ =
√
2Sc (Lu and Porté-Agel, 2013). Tests359

(e.g., Jiménez et al., 2001) have shown that the Schmidt number (or the Prandtl number depending on the360

physical significance of the scalar field) leads to satisfactory results. When clipping is included, the SGS kinetic361

energy is written as362

ksgs = H (P )
∆̃2

C2
ε

[(
− G̃ij

G̃kk

S̃ij

)
+363

√√√√(− G̃ij

G̃kk

S̃ij

)2

+H (Pθ)
2Scg

Θ0

(
−
G̃θ,i

|G̃θ|
∂θ̃

∂xi

)(
G̃θ,3

|G̃θ|

)
2

. (26)364

The modified Mij term for determining coefficients, shown in Eq. 16, is written as365

Mij = 2α2∆̃
2

(−G̃mn

G̃kk

S̃mn

)
+

√√√√(−G̃mn

G̃kk

S̃mn

)2

+
2Scg

Θ0

(
−
G̃θ,j

|G̃θ|

∂θ̃

∂xj

)(
G̃θ,3

|G̃θ|

)
2(

G̃ij

G̃ll

)
366

−2∆̃2

(−G̃mn

G̃kk

S̃mn

)
+

√√√√(−G̃mn

G̃kk

S̃mn

)2

+
2Scg

Θ0

(
−
G̃θ,j

|G̃θ|
∂θ̃

∂xj

)(
G̃θ,3

|G̃θ|

)
2(

G̃ij

G̃ll

)
, (27)367

and the modified Xi term is written as368

Xi =
√
2α2∆̃

2

(−G̃mn

G̃kk

S̃mn

)
+

√√√√(−G̃mn

G̃kk

S̃mn

)2

+
2Scg

Θ0

(
−
G̃θ,j

|G̃θ|

∂θ̃

∂xj

)(
G̃θ,3

|G̃θ|

)(− G̃θ,j

|G̃θ|

∂θ̃

∂xj

)(
−
G̃θ,i

|G̃θ|

)
369

−
√
2∆̃

2

(−G̃mn

G̃kk

S̃mn

)
+

√√√√(−G̃mn

G̃kk

S̃mn

)2

+
2Scg

Θ0

(
−
G̃θ,j

|G̃θ|
∂θ̃

∂xj

)(
G̃θ,3

|G̃θ|

)(− G̃θ,j

|G̃θ|
∂θ̃

∂xj

)(
−
G̃θ,i

|G̃θ|

)
, (28)370

We adopt Sc = 0.71 in this study, which is the Prandtl number of air near 20◦C.371

6. Stable atmospheric boundary layer372

We implement the new closure in a horizontally homogeneous stable boundary layer (SBL) case. The set-up373

is based on an intercomparison study as part of the Global Energy and Water Cycle Experiment Atmospheric374

Boundary Layer Study (GABLS) initiative. This LES intercomparison case study, described in detail in Beare375

et al. (2006), represents a typical moderately stable, quasi-equilibrium ABL, similar to those commonly376

observed over polar regions and equilibrium nighttime conditions over land in mid latitudes. In summary,377

the boundary layer is driven by an imposed, uniform geostrophic wind of Ug = 8ms−1; the Coriolis parameter378

is set to fc = 1.39 × 10−4 rad s−1; the initial potential temperature profile consists of a mixed layer (with379

potential temperature 265K) up to 100m with an overlying inversion of strength 0.01Km−1, and the surface380

(ground level) potential temperature is reduced at a prescribed surface cooling rate of 0.25Kh−1. The height381

of the computational domain is H = 400m. As suggested by Stoll and Porté-Agel (2008), to provide a larger382
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range of scales (better able to capture larger buoyancy waves), the horizontal domain is twice the horizontal383

domain used in Beare et al. (2006), thus Lx = Ly = 800m. We carried out simulations with resolutions of384

Nx×Ny×Nz = 64×64×64, 80×80×80, 96×96×96, and 128×128×128. In contrast to the constant surface385

flux imposed in the neutral ABL case, the surface heat flux is computed through the application of surface-386

layer similarity theory: q3|w =
u∗κ(θs−θ̃)

ln (z/z0)−ΨH
, where θs is the surface (ground level) potential temperature, and387

ΨH is the stability correction for heat. Following the recommendations of the GABLS study, we adopt the388

roughness length z0 = 0.1m, ΨM = −4.8z/L and ΨH = −7.8z/L, where L is the Obukhov length. A Rayleigh389

damping layer above 300m is used following the GABLS case description. More details can be found in Beare390

and MacVean (2004), Beare et al. (2006), Basu and Porté-Agel (2006), Stoll and Porté-Agel (2008), Lu and391

Porté-Agel (2011, 2013).392

6.1. Wind speed and potential temperature393

Figure 8 shows the mean profiles of the resolved wind speed and potential temperature, where averaging is394

performed both horizontally and over the last hour of simulation. Current simulation results are also directly395

compared with the 803 simulation results performed by Basu and Porté-Agel (2006). A low-level jet appears396

clearly near the top of the boundary layer, as predicted by Nieuwstadt’s theoretical model (Nieuwstadt, 1985)397

and observed previously in simulations (e.g., Beare et al., 2006; Basu and Porté-Agel, 2006; Stoll and Porté-398

Agel, 2008; Lu and Porté-Agel, 2013). Also in agreement with other GABLS simulation results, an increase in399

resolution leads to a general decrease in the boundary-layer depth, an enhancement of positive curvature in400

the potential temperature profile in the interior of the SBL, and an increase in jet strength. Interestingly, a 643401

resolution is sufficient for the new model to yield a boundary-layer depth similar to that of the 803 simulation402

performed using a local dynamic model (Basu and Porté-Agel, 2006).403
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Figure 8. Mean (a) wind speed and (b) potential temperature obtained from different resolution simulations of the GABLS case.

The Ekman spiral refers to wind or current profile near a horizontal boundary in which the flow direction404

rotates as one moves away from the boundary. The laminar solution produces a surface wind parallel to the405

surface-stress vector and at 45◦ to the geostrophic wind, a flow angle that is somewhat larger than that observed406

in real conditions. Figure 9 shows a surface flow angle of approximately 35◦, which is in good agreement with407

most SBL cases (e.g., Kosović and Curry, 2000; Basu and Porté-Agel, 2006).408

In SBL simulations, the non-dimensional velocity gradient, ΦM , and the non-dimensional temperature409

gradient, Φθ, are key parameters for surface parametrizations in large-scale models and in assessments of SGS410
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Figure 9. Wind hodographs obtained from different resolution simulations of the GABLS case.

models. Owing to the existence of the non-zero mean spanwise velocity component, the definition in Eq. 21 is411

modified as412

ΦM =
κz

u∗

√(
∂ ⟨ũ⟩
∂z

)2

+

(
∂ ⟨ṽ⟩
∂z

)2

, (29)413

and in the surface layer, ΦM and Φθ are usually parametrized as functions of z/L. In Fig. 10, we plot the ΦM414

and Φθ results and compare them with the formulations proposed by Businger et al. (1971)415

ΦM = 1 + 4.7
z

L
, (30a)416

417

Φθ = 0.74 + 4.7
z

L
, (30b)418

and by Beljaars and Holtslag (1991)419

ΦM = 1 +
z

L

(
a+ be−

dz
L

(
1 + c− dz

L

))
, (31a)420

421

Φθ = 1 +
z

L

(
a

√
1 +

2

3

az

L
+ be−

dz
L

(
1 + c− dz

L

))
, (31b)422

where the coefficients are a = 1, b = 2/3, c = 5 and d = 0.35. The points are from the lowest 40m of the423

simulation domain. In general, all the simulation results agree quite well with the empirical relations. The424

non-dimensional velocity gradient is slightly underestimated for the lowest two to three grid points. With the425

coupling of the velocity field and the scalar field, the computed non-dimensional scalar gradient matches the426

similarity profiles remarkably well. In the surface layer, the results have better agreement with Eq. 30 than427

with Eq. 31.428

Figure 11 shows the PDFs of the two model coefficients obtained from the 1283 simulation. The results are429

presented for four different heights and also for the whole boundary layer (bold grey lines in Fig. 11). It is430
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Figure 10. Non-dimensional (a) velocity gradient and (b) temperature gradient obtained from different resolution simulations of
the GABLS case. The solid and dashed lines correspond to the formulations according to Eqs. 30 and 31.
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Figure 11. Probability density functions of the dynamically calculated coefficients, (a) Cε and (b) Cεθ, obtained at different heights
within the GABLS case and overall.

clear that the PDFs of Cε and Cεθ in the GABLS case simulations are even more consistent at all levels than431

those in the neutral ABL case as shown in Fig. 2.432

Figure 12 shows the median values of Cε and Cεθ versus z. Overall, the two dynamically-calculated coeffi-433

cients have averaged values that are approximately constant throughout the turbulent boundary layer. Again,434

recall that Cε = 1 and Cεθ = 1 in the GABLS case simulations (Lu and Porté-Agel, 2013) are reasonable435

values, even when these values are based on theoretical arguments.436

6.2. Turbulent fluxes437

It is important to investigate the normalized flux profiles as shown in Fig. 13. Nieuwstadt’s analytical model438

(Nieuwstadt, 1985) predicts that the total buoyancy flux, if normalized by its surface value, should be a linear439
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Figure 12. Averaged values of the dynamically calculated coefficients, (a) Cε and (b) Cεθ, obtained from different resolution
simulations of the GABLS case.
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Figure 13. Mean normalized total (a) momentum flux profiles and (b) buoyancy flux profiles obtained from different resolution
simulations of the GABLS case.

function of z/δ, where the boundary-layer depth δ is defined as (1/0.95) times the height where the horizontally440

averaged flux falls to 5% of its surface value (Beare et al., 2006); likewise, the total normalized momentum441

should follow a 3/2 power law with z/δ. The intercomparison study of Beare et al. (2006) and the studies of442

Basu and Porté-Agel (2006), Stoll and Porté-Agel (2008) and Lu and Porté-Agel (2013) all reproduced the443

profiles to a high degree of accuracy. It is clear that our results follow the theoretical predictions quite closely444

at all resolutions, and the performance of the new model is slightly better compared with the results obtained445

using the non-dynamic closure of Lu and Porté-Agel (2013).446
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7. Lagrangian dynamic model447

Lagrangian averaging (Meneveau et al., 1996) is a commonly used method for overcoming the intermittency of448

the coefficient resulting from purely local dynamic determinations. Also, Lagrangian dynamic models are well449

suited for the simulation of heterogeneous turbulent flows. This section presents the results of the Lagrangian450

version of the model in the neutral ABL case.451

Following the flow backward along fluid path lines, the Lagrangian average of any quantity A(x, t) at time452

t and spatial position x is defined as: ⟨A⟩L =
∫ t
−∞A W dt′, where W (t− t′) is a weighting function controlling453

the importance of events backwards along the path line. The expressions for Cε and Cεθ can be written as454

(Cε)
−2 =

⟨LijMij⟩L
⟨MijMij⟩L

, (32)455

and456

(CεθCε)
−2 =

⟨KiXi⟩L
⟨XiXi⟩L

. (33)457

For the weighting function, a common choice is the exponential formulation, W (t−t′) = (1/T )e−(t−t′)/T . Based458

on previous studies (Meneveau et al., 1996; Bou-Zeid et al., 2005; Stoll and Porté-Agel, 2006b), the time scale459

T is chosen as T = 1.5∆̃
(
⟨LijMij⟩L ⟨MijMij⟩L

)−1/8
for Eq. 32 and T = 1.5σθ∆̃ (⟨KiXi⟩L ⟨XiXi⟩L)

−1/4 for460

Eq. 33, where σθ is the standard deviation of the scalar concentration fluctuations. The Lagrangian average461

offers the practical advantage of allocating less weight to the recent history if the current values of LijMij and462

KiXi are negative. As a result, the values of ⟨LijMij⟩L and ⟨KiXi⟩L are seldom negative. Further, when the463

SGS production is negative, the coefficient is not in use, and also the correlations between Lij and Mij and464

between Ki and Xi are weak. To address these issues and also to avoid sharp jumps in the coefficients, when465

backscatter occurs, we locally assign LijMij = MijMij and KiXi = XiXi, which is based on the constant466

values used previously (Lu and Porté-Agel, 2010, 2013).467
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Figure 14. Non-dimensional vertical gradient of (a) the mean resolved streamwise velocity and (b) the mean resolved scalar
concentration obtained from simulations of the neutral ABL case. The dashed line corresponds to the classical similarity profile.
The left/right corner plot is a zoomed view of the surface layer and it has a log scale in the vertical direction.

The values of ΦM and Φθ resulting from the Lagrangian version of the model are presented in Fig. 14.468

Overall, the model yields a value of ΦM that remains close to 1, and a value of Φθ that remains close to 0.74,469

main.tex; 4/04/2014; 18:04; p.18



Dynamic non-linear closure for LES 19

indicative of the expected similarity profiles. The non-dimensional gradients are slightly overestimated for the470

second lowest grid point, but the deficiencies are compensated at the third lowest grid point.471
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Figure 15. Averaged non-dimensional 1-D spectra of (a) the streamwise velocity component and (b) the resolved scalar concen-
tration obtained from the 1283 simulation of the neutral ABL case. Heights (z/H) increase approximately from 0.004 to 0.5. The
slopes of −1 and −5/3 are also shown.

Figure 15 shows the normalized spectra obtained from the 1283 simulation, noting that the model is evidently472

capable of achieving the −5/3 power-law scaling in the inertial subrange. The streamwise velocity spectra473

are slightly improved comparing with those obtained using the standard modulated gradient model (Lu and474

Porté-Agel, 2010) and the dynamic model, which show slightly excessive dissipation near the surface.475
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Figure 16. Probability density functions of the dynamically calculated coefficients, (a) Cε and (b) Cεθ, obtained at different heights
within the neutral ABL and overall.

The probability density functions of the coefficients, shown in Fig. 16, are very similar at all levels and476

reveal that the fluctuations follow a near log-normal distribution. Figure 17 shows that, overall, the dynam-477

ically calculated coefficients have averaged values that are approximately constant throughout the turbulent478

boundary layer.479
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Figure 17. Averaged values of the dynamically calculated coefficients (a) Cε and (b) Cεθ, obtained from different resolution
simulations of the neutral ABL case.

8. Summary480

We have developed a dynamic non-linear SGS closure for LES. The complete SGS model bears most of481

the desirable characteristics of a non-viscosity gradient SGS stress model (Lu and Porté-Agel, 2010; Lu,482

2011) and a non-diffusivity SGS flux model (Lu and Porté-Agel, 2013). In contrast to the original model,483

the proposed closure is tuning-free because it uses the Germano identity (Germano et al., 1991; Lilly, 1992)484

between the resolved (Leonard) stresses/fluxes and the SGS stresses/fluxes to dynamically compute the two485

model coefficients.486

It is well known that in the surface layer of the ABL, where SGS motions contribute to a large fraction of the487

total turbulent fluxes, LES is rather sensitive to SGS parametrization. Traditional closures yield deviations488

from the Monin-Obukhov similarity forms in the surface layer. The deviations are readily observed in the489

wind-speed and temperature profiles, and to a greater extent in their dimensionless vertical derivatives. The490

potential of the new closure is presented in simulations of a well-established neutrally stratified ABL case and a491

well-known stably stratified ABL case. Overall, numerical results are in good agreement with reference results492

(based on observations, well-established empirical formulations and theoretical predictions of a variety of flow493

statistics).494

This study also reveals that the probability density functions of Cε and Cεθ are near log-normal, and495

median values of the two model coefficients are approximately constant (close to the theoretical values)496

throughout the turbulent boundary layer. The latter explains the reason why, in previous ABL simulations497

and simulations of other types of fluid flow (Lu and Porté-Agel, 2010, 2013; Lu, 2011; Cheng and Porté-498

Agel, 2013), satisfactory results were achieved using constant coefficients. This gives the closure an advantage499

over the standard Smagorinsky model, which bears the issue that the optimum value of the constant model500

coefficient, Cs, varies greatly depending on the local flow conditions.501

Despite the good performance exhibited by the new closure, it is based on the assumption of local equilib-502

rium. Possible future modifications of the model include the development and testing of alternative ways of503

computing the magnitude of the SGS flux (e.g., solving additional equations for both the SGS kinetic energy504

and the SGS scalar variance).505
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