Governing equations of rotating stratified flow (version 2)

The Boussinesq approximation (also known as the Boussinesq-Oberbeck approximation) is
a special case of the low-Mach number equations for small density and temperature variations
with gravity included. Traditionally, the Boussinesq approximation has two main components:
(i) density fluctuations resulting from motion result principally from thermal (as opposed to
pressure) effects, and (ii) perturbation density is important only in the gravity term. Let

Pt = po+ p,(xa t)a (1)
P = P(y) + P/(X7t)7 (2)
where p; and P, are the total density and pressure, and x = (z,y, 2) is the coordinate vector. It

has been observed that p’ < pg, and P’ < P, where symbol “<” implies ~ 100 times smaller for
ocean flows. Hydrostatic balance solution gives

where ¥ is the unit vector in the vertical direction.
For low-Mach number (< 0.3), the conservation equation of mass is

V-u=0, (4)
where u = (u, v, w) is the velocity vector. The momentum conservation equations are
Ou - .
Gy +u-Vu) = —VP = p,f§ x u— pgy + pViu, (5)

where f = 2() is twice the frame rotation rate, g is the gravitational acceleration, and y is the
viscosity. The momentum conservation equations can be simplified using the hydrostatic balance
solution (3) and the Boussinesq approximation

0
a—?+u-Vu:—Vp—fyxu—gﬁjf—l—uv2u, (6)

where p is the effective pressure, v is the kinematic viscosity, and 6 = p’/pg is the non-dimensional
density.

In order to closure the conservation equations for mass (4) and momentum (6), the trans-
portation equation of density fluctuation (or, internal energy, salinity) is needed

00 9

E%—u-V@-%V@, (7)
where k is the diffusion coefficient of density.

P.S.

The dimensional equations can be referred to Coleman, Ferziger & Spalart [1], Slinn & Riley [3],

Smith & Waleffe [4], and Shirgaonkar & Lele [2].

References

[1] G. N. Coleman, J. H. Ferziger, and P. R. Spalart. Direct simulation of the stably stratified
turbulent Ekman layer. J. Fluid Mech., 244:677-712, 1992.

[2] A. A. Shirgaonkar and S. K. Lele. On the extension of the boussinesq approximation for
inertia dominated flows. Phys. Fluids., 18(066601):1-12, 2006.

[3] D. N. Slinn and J. J. Riley. A model for the simulation of turbulent boundary layers in an
incompressible stratified flow. J. Comput. Phys., 144(2):550-602, 1998.

[4] L. M. Smith and F. Waleffe. Generation of slow large scales in forced rotating stratified
turbulence. J. Fluid Mech., 451:145-168, 2002.



Description of parameter file for ‘“channelflow” code (including rotation in the y-direction,
scalar equation for stratification)

Hao Lu 11/02/2007, revised on 2/26/2008, 3/5/2008

1. Filename is “condition.param”

2. [Example]

1. nu = 0.25

2 dtmax = 0.1

3 CFLmin = 0.1

4. CFLmax = 0.9

5. T0O=10.0

6 T1=10.0

7 dT =1.0

8 Omega = 0.0

9. Usurface = 0.0

10. isurfp = 0

11. Up0 = 0.0

12. Up =0.0

13. Op0 = 0.0

14. Op=0.0

15. kpx = 0.0

16. kpz = 0.0

17. ihyper = 0

18. nuu = 0.0

19. iscalar = 0

20. g=20.0

21. kappa = 1.0

22. BC = DbDt

23. bottomvalue = 0.0

24, topvalue = 1.0

25. sbound =0

26. smax = 1.0

27. smin = 0.0

28. dPdx = 0.0

29. iforce = 0

30. kfmin = 3.5

31. kf = 4.0

32. kfmax = 4.5

33. ef =04

34. forcingtime = 0.0

35. iLES=0

36. baseflow = PlaneCouette
37. timestepping = CNRK2
38. initstepping = SMRK2
39. nonlinearity = Rotational
40. dealiasing = DealiasXZ
41. taucorrection = true
42. constraint = PressureGradient
43. Ubulk = 0.0

44, Lx =2.0

45, Ly =2.0

46. Lz =2.0

3. There are 46 parameters totally; many of them can be not included in a *“condition.param” file if
using the default values. The order is arbitrary, but the format “name = value” must be followed for
each parameter.

4. [Explanation] (R: double precision real number; I: integer number)
nu = 0.25: R; kinetic viscosity; the default value is 0.25

dtmax = 0.1: R; maximum time step for time marching; the default value is 0.1

CFLmin = 0.1 : R; minimum CFL number; the default value is 0.1



CFLmax = 0.9 : R; maximum CFL number; the default value is 0.9

TO = 0.0 : R; initial time; the default value is 0.0
T1 =10.0 : R; final time; the default value is 10.0
dT = 1.0 : R; time step to output assessments (such as spectrum); the default value is 1.0

Omega = 0.0 : R; rotation rate in the y-direction; the default value is 0.0

Usurface = 0.0 : R; mean velocity on top surface; the default value is 0.0;

isurfp = 0 : I; identification of adding perturbation on top; the default value is O; isurfp=0: no perturbation;
isurfp=1: u=Usurface+Up0*sin(Op0*t)+Up*sin(Op*t-kpx*x*2n/Lx-kpz*z*2n/Lz);
1surfp=2: v=UpO0*sin(OpO0*t)+Up*sin(Op*t-kpx*x*2n/Lx-kpz*z*2n/Lz);
1surfp=3: w=UpO0*sin(Op0*t)+Up*sin(Op*t-kpx*x*2n/Lx-kpz*z*2n/Lz);

UpO = 0.0 : R; perturbation velocity (zero mode); the default value is 0.0;

Up = 0.0 : R; perturbation velocity; the default value is 0.0;

Op0 = 0.0 : R; frequency for zero mode; the default value is 0.0;

Op = 0.0 : R; frequency; the default value is 0.0;

kpx = 0.0: R; the default value is 0.0

kpz = 0.0: R; the default value is 0.0

ihyper = 0: [; identification of using hyper-viscosity; if ihyper=0, no hyper-viscosity is included, if ihyper=1,
hyper-viscosity will be included in momentum equations; the default value is 0
nuu = 0.0: R; magnitude of hyper-viscosity; the default value is 0.0

iscalar = 0 : I; identification of including scalar equation; the default value is 0; if iscalar=0, then scalar equation
is not included; if iscalar=1, then scalar equation is included, but scalar does not effect momentum equation; if
iscalar=2, then scalar equation is included, and scalar effect momentum equation (stratification). Note, set
iscalar=0 if you don’t want to compute a scalar equation, and it will save more than 25% CPU cost.

g = 0.0: R; value of gravitational acceleration, which describes the density fluctuation effect in momentum
equation; the default value is 0.0;

kappa = 1.0 : R; diffusion coefficient for scalar equation; the default value is 1.0

BC = DbDt : ={DbDt, DbNt, NbDt, NbNt}; boundary condition for scalar equation; the default value is DbDt;
upper “D”, “N” mean Dirichlet and Neumann, lower “b”, “t” mean bottom and top

bottomvalue = 0.0: R; value of scalar boundary condition at bottom; the default value is 0.0
topvalue = 1.0: R; value of scalar boundary condition at top; the default value is 1.0

sbound = 0: I; set scalar bound or not; if sbound=1 or 3, s<smax; if sbound=2 or 3, s>smin; otherwise, no bound;
the default value is 0 (no bound)

smax = 0.0: R; maximum value of scalar; the default value is 1.0

smin = 0.0: R; minimum value of scalar; the default value is 0.0

dPdx = 0.0: R; mean pressure gradient; the default value is 0.0

iforce = 0: [; identification of including Gaussian forcing; the default value is 0; if iforce=0, then Gaussian
forcing is off; if iforce=1, then Gaussian forcing is on; Gaussian forcing range is kfmin<k<kfmax, the peak
wave-number is kf, the energy input rate is ef, and until forcingtime

e kfmin = 3.5: R; the default value is 3.5

e kf=4.0: R; the default value is 4.0

o kfmax =4.5: R; the default value is 4.5

o ef =0.4: R; the default value is 0.4

o forcingtime = 0.0: R; the default value is 0.0 (won’t stop forcing if forcingtime <0.0)



iLES = 0: [; identification of LES (SGS) model; the default value is 0; if iLES=0, then no LES modeling; if
1iLES=others, different SGS models will be included according to this id number.

(We suggest using the default values for the following parameters)

baseflow = PlaneCouette: ={Zero, PlaneCouette, Parabolic}; base flow; the default value is PlaneCouette

timestepping = CNRK2: ={CNFE1, CNAB2, CNRK2, SMRK2, SBDFI1, SBDF2, SBDF3, SBDF4}; time
stepping scheme; the default value is CNRK?2; currently, rotation and stratification is included only using
CNRK2

initstepping = SMRK?2: ={CNFE1, CNAB2, CNRK2, SMRK?2, SBDF1, SBDF2, SBDF3, SBDF4}; initial time
stepping scheme; the default value is SMRK?2; not very serious, can be arbitrary or just use the default value

nonlinearity = Rotational: ={Rotational, Convection, Divergence, SkewSymmetric, Alternating, Alternating_,
LinearAboutField, LinearAboutProfile}; method to include nonlinear term; the default value is Rotational;
Rotational form is more accurate than Convection form and Divergence form for many cases, and Rotational
form is much faster than SkewSymmetric form

dealiasing = DealiasXZ: ={NoDealiasing, DealiasXZ, DealiasY, DealiasXYZ, DealiasX}; de-aliasing flag; the
default value is DealiasXZ; NoDealiasing is not accurate, de-aliasing flag in the y-direction does not work (code
dumped), however, de-aliasing in the y-direction is always employed

taucorrection = true: ={true, false}; tau correction or not; the default value is true;

constraint = PressureGradient : = {PressureGradient, BulkVelocity}; flow constraint to be enforced; the default
value is PressureGradient

Ubulk = 0.0 : R; bulk velocity value; the default value is 0.0
Lx =2.0: R; box dimension in the x-direction; the default value is 2.0

Ly =2.0 : R; box dimension in the y-direction; the default value is 2.0
Lz =2.0: R; box dimension in the z-direction; the default value is 2.0

5. Flags to run this program: there are one optional flag to run the program, and both flags are integer
numbers. For example, “run 2”. Let’s use a general form “run i” to explain the details.

I Plot3D (ParaView) TecPlot X (X>9) U* in wall coordinates
+1 Yes No No
+2 No Yes No
+3 Yes Yes No
+4 Yes No Yes
+5 No Yes Yes
+6 Yes Yes Yes
+7 No No Yes
Otherwise (or not set) No No No

If i<0, then program won’t save velocity/pressure/scalar data. For example, set i=—8 (or no input of 1)
in order to turn off everything.




3D numerical simulation using channelflow 1.1.2 for rotating turbulence

Input and initialization

E Time marching

dns.advance(u, g, n)

LMl Output and end

/! Define gridsize
const int Nx=32;
const int Ny=33;
const int Nz=32;

/] Define box size
const Real Lx=1.75%pi;
const Real a= -1.0;
const Real b= 1.0;
const Real Lz=1.2*pi;

/1 Define flow parameters
const Real Reynolds = 400.0;
const Real nu = 1.0/Reynolds;
const Real dPdx = 0.0;

const Real Ubulk = 0.0;

Il Define integration parameters

const int n = 50; /1 take fifty steps between printouts
const Real dt = 0.03125; // integration timestep

const Real T = 100.0; // integrate from t=0 to t=T

/I Define DNS parameters
DNSFlags flags;

flags.baseflow = PlaneCouette;
flags.timestepping = SBDF3;
flags.initstepping = SMRK2;
flags.nonlinearity = Rotational;

flags.dealiasing = DealiasXZ;
flags.taucorrection = true;
flags.constraint = PressureGradient; // enforce constant pressure gradient

flags.dPdx = dPdx;
flags.Ubulk = Ubulk;

/I Define size and smoothness of initial disturbance
Real spectralDecay = 0.5;

Real magnitude = 0.3;

int kxmax = 3;

int kzmax = 3;

Il Construct data fields: 3d velocity and 1d pressure

cout << "building velocity and pressure fields..." << flush;
FlowField u(Nx,Ny,Nz,3,Lx,Lz,a,b);

FlowField q(Nx,Ny,Nz,1,Lx,Lz,a,b);

cout << "done" << endl;

/I Perturb velocity field
u.addPerturbations(kxmax,kzmax,1.0,spectralDecay);
u *= magnitude/L2Norm(u);

/I Construct Navier-Stoke integrator, set integration method
cout << "building DNS..." << flush;

DNS dns(u, nu, dt, flags);

cout << "done" << endl;

update velocity (u) and pressue (q)

tau solver

4

calcuate effective pressue; add rotation term

4

calculate diffusion in physical space:
diff2(uk_, Rxk_, Pyk_);
diff2(vk_, Ryk_, Pyk_);
diff2(wk_, Rzk_, Pyk_)

dealiasing

calculate the Nonlinear term according nonlinearity flag:
navierstokesNL(u, ..., flags.nonlinearity)

DNSAlgorithm has been cloned by RungeKuttaDNS, MultistepDNS,
and CNABstyleDNS. Thus advance(...) will be directed to one of them
according to DNSFlags.timestepping.

Data can be loaded from a binary or asc file.

DNSFlags.baseflow: PlaneCouette - Ubase=y; Parabolic - Ubase=1-y"2
Zero - Ubase=0

DNSFlags.timestepping & initstepping:
CNFE1l, CNAB2, CNRK2, SMRK2, SBDF1, SBDF2, SBDF3, SBDF4

DNSFlags.nonlinearity: the way to compute the nonlinear term in the
NS equations. Rotational, Convection, Divergence, SkewSymmetric ...

DNSFlags.dealiasing: NoDealiasing, DealiasY, DealiasXZ, DealiasXYZ

DNSFlags.constraint: enforcing bluk velocity or mean pressure constraint

void DNS::advance(FlowField& u, FlowField& g, int Nsteps) {
assert(main_algorithm_);

Il Error check
if (!'main_algorithm_->full() && !init_algorithm_) {
cerr << "DNS::advance(u,q,Nsteps) : the main algorithm is uninitialized,\n"
<< "and the initialization algorithm is not set. This should not be\n"
<< "possible. Please submit a bug report (see documentation)."
<< endl;
exit(1);
}
int n=0;
while (!main_algorithm_->full() && n<Nsteps) {
init_algorithm_->advance(u,q,1);
main_algorithm_->push(u);
if (main_algorithm_->full()) {
delete init_algorithm_;
init_algorithm_ = 0;

++n;

}

main_algorithm_->advance(u,q,Nsteps-n);

}

/\



High-level objects

for simulation programs

DNSIntegrator

u(t) — u(t + At)
p(t) — p(t + At) |-

TurbStats
(u(x)u(x’))

| (u(x)), etc.

for libraries

TauSolver A
v’ —Aa—-Vp=f=f FlowField u(x) =
V-i=0 ﬁkwk:neQri(ka—l—kzz)Tn(y)
a(£1)=0 . \
BasisFunc
u(y) = . Tn(y)
y
HelmholtzSolver ComplexChebyCoeff
u' —u = f u(y) = tnTn(y)
12
BandedTridiag ChebyCoeff
Tijuj = f; u(y) = nTn(y)
Low-level objects Array < type > fftw-2.1.3

2 FFT libraries






